航空宇宙技術研究所資料
TECHNICAL MEMORANDUM OF NATIONAL AEROSPACE LABORATORY

TM-668

遅音速風洞フラック緊急停止装置性能試験
（その1）半截模型カート用装置の効果

鈴木弘一・細江信幸・飯島由美
小松行夫・国益徹也・安藤泰勝
半沢麻雄・鈴木誠三

1994年11月

航空宇宙技術研究所
NATIONAL AEROSPACE LABORATORY
目次

1. 序論 .. 1
2. フラッタ緊急停止装置の製作 .. 2
 2.1 装置製作の目的 ... 2
 2.2 装置への要求 ... 2
 2.3 半載模型用カートの構造 ... 2
 2.4 装置の設計 ... 3
 2.5 装置の構造 ... 5
 2.6 装置の操作手順 .. 6
 2.7 廃止板開度の調整 ... 7
3. フラッタ緊急停止装置の特性試験 .. 9
 3.1 模型なし特性試験 ... 9
 3.2 模型なし騒音及び振動特性 .. 10
 3.3 フラッタ制御翼模型 .. 12
 3.4 フラッタ制御翼模型試験 .. 12
4. フラッタ緊急停止板の改造 .. 13
 4.1 改造の検討 .. 13
 4.2 模型なし特性試験（延長停止板） ... 14
5. フラッタ制御則検証試験 .. 15
6. まとめと今後の課題 ... 15
参考文献 .. 16
Performance Test of Flutter Emergency Stopper for Transonic Wind Tunnel

(Part 1) Effect of Half Model Cart Device

Kouichi SUZUKI, Nobuyuki HOSOE, Yoshimi IIJIMA, Yukio KOMATSU, Tetsuya KUNIMASU, Yasukatsu ANDO, Asao HANZAWA, Seizo SUZUKI

ABSTRACT

This paper describes the experimental results on the effectiveness of a flutter emergency stopper for the NAL 2 m × 2 m Transonic Wind Tunnel.

The stopper consists of a rising porous plate on the lower wall of the half model cart and an actuator using an air cylinder. Two rising plates were used for evaluation of the stopper. It was concluded that the larger stopper should be employed in the model cart due to its greater effectiveness.

Keywords: Flutter suppression device, Transonic wind tunnel, Flutter control test.

概要

2 m × 2 m 遅音速風洞で空力弾性風洞試験を行うため、フラッタを緊急に停止する装置を開発、設計及び製作し、半截模型用カートに設置した。この装置は、遅音速フラッタを有効に停止させることができることが判明したので、装置の概要、試験及び結果について報告する。

1. 序論

航空宇宙技術研究所では、革新航空宇宙輸送要素技術の一環として、空力弾性を対象にした能動制御技術（Active Control Technology: ACT）の研究が進められており、1983年から開始された低速域での実験的研究により、突風荷重軽減効果、フラッタ速度の改善等多くの成果を得ている。更に、この ACT 技術を実機に適用するためには高速域での実験的検証が必要であり、このため航空宇宙技術研究所 2 m × 2 m 遅音速風洞を用いて実験を行うことになった。
2. フラッタ緊急停止装置の製作

2.1 装置製作の目的

音速領域でのフラッタ制御技術の実験を行うためには、模様にフラッタを起こさせる技術と、発生したフラッタを停止させる技術が必要である。即ち、制御則を検証するためには、模型に実際にフラッタを起こさせて、制御則とその効果を調べる実験を繰り返し行う。その場合、制御則が有効に作用してフラッタが停止すれば、圧力変動を上昇させて次の実験を継続するのに都合が良い。しかし、フラッタが停止しない時には、模型と風洞の破損を防ぐために何等かの方法で模型に発生しているフラッタを緊急に停止させる装置が必要となる。2m x 2m 遲音速風洞においては、既設の設備としてこのような設備が用意されていなかった。そのため、パイロット風洞を用いて相似装置による予備試験が実施され、効果的なフラッタ停止機能が確認されたので、2m x 2m 遲音速風洞に合適した装置が提案された。

2.2 装置への要件

装置を作製するにあたっての仕様は、模型の上流側に壁面の開口比20%に合った多孔板（緊急停止板）を取り付け、計測室からの遠隔操作で、多孔板を自動的に行なう。壁面に設けられた緊急停止板、緊急停止装置と、その装置を制御する構造とすることである。風洞試験中に突然フラッタ現象が起きた時は、瞬時に作動して、模型を壊すことなくフラッタを緊急に停止する構造とすること。

これに満たすならば、フラッタを停止させることなく試験を継続させることになる。即ち、フラッタ制御則を検証する有効な設備となる。尚、この装置の設計風速及び総压の範囲は、マッハ数0.99、風洞総压100kPaを上限として、作業を進めることにした。また、この装置は取り扱いとメンテナンスを容易にするため、駆動には既存の高圧空気を用いた空気シリンダーを用いることにした。

2.3 半截模型用カートの構造

模型を設置する固定部カートは、2m x 2m 遲音速風洞測定部で、通常の半截模型用の試験時に使用している、図1に示す形状の半截模型用カートである。半截模型用カートは、通常の試験では床中央のターンテーブル上に模型を取付けて、風洞試験を実施する形式である。ターンテーブルは模様の姿勢を変更するほか、その下に5分力天秤が組込まれており、模型に働く空気力の計測に使用する。このため、この部分は図2に示す通り、床下の機器の保守用として床板を取り外し可能な構造になっている。そこで、緊急停止はこの上流部分を切断して加工することにした。床のそれ以外の部分は、平滑度を保持するため、床下の強度部材の梁とボルトで固定されており、そのままで構造上加工出来ない。上壁も同様に取り外し可能な部分はあるが、そこには模型を取付けられなくなるようになっているので、もし同じ方向に装置を取り付けられる場合には、模型部分を細工しないと設置出来ない。左右壁は部分的な取り外しが出来ない。

したがって、この部分に装置を取り付ける場合は、壁の大改造が必要となる。そこで、停止板の形状及び設置場所について、遅音速パイロット風洞を用いて予備試験が実施され、三角形、ホームベース型及び矩形板の形状が比較的、上壁（天井）及び下壁（床）の取付け位置の比較試験を行い、何れの形態でも、上壁に取付けた模型に対するフラッタ停止機能において有効なことを確認した。

図1 半截模型用カート

（単位 mm）
2.4 装置の設計

前述の半載模型用カート床板を加工して緊急停止装置を作成する場合、フラックス停止板には大きな制限がある。

そのため、動圧低下量の改善が必要である。そこで、測定断面を F_w、フラックス停止板の断面を F_p とし、設定マッハ数を M、フラックス停止板を立ち上げたことによるマッハ数低下量をΔM とすると、$M=1$ の時は次の実験式により近似出来ることが示されている。

$$\Delta M = M' \sqrt{(2/(k+1)) \times (F_p/F_w)} \quad (1)$$

そこで、マッハ数の低下量をマッハ数の関数として推算するため、(2) 式で表せると仮定して ν、比熱比 $k = 1.4$ としてマッハ数の低下量を算出した。その結果を図3に示す。この程度の効果があれば、実際に使用することには、支障がないと思われた。

$$\Delta M = M' \sqrt{(2/(k+1)) \times (F_p/F_w)} \quad (2)$$

停止板に掛かる荷重は、設定マッハ数 $M=0.9$、風洞 声速 $P_0=100$ kPa を風洞試験範囲の最大条件と想定して、次のように算出した。動圧を Q [kPa]、停止板が気流を受ける受圧面の面積を A [mm2]、抵抗係数を C_d

図3 フラックス緊急停止装置・マッハ数低下量推算値

とし、停止板の開度を60°とすれば、停止板が気流から受ける垂直力 F [N] は

$$F = Q \times A \times C_d \times \sin 60^\circ \quad (3)$$

となり、簡単のために垂直力は板に均等に掛かると仮定すれば、停止板の断面と回転軸の距離を L_g [mm] とすれば、回転軸に掛かるヒンジモーメント M [Nm] は

$$M = F \times L_g \quad (4)$$

となる。これらの式によって、板の受ける空気力を積もることが出来る。

先ず、測定部静圧 P_s は

$$P_s = P_0 / (1+0.2M^3) \quad (5)$$

から、$P_s=59.13$kPa となるので、動圧 Q は比熱比 $k=1.4$ として

$$Q = (P_s \times k \times M^3) / 2 \quad (6)$$

から、$Q=33.53$kPa となる。

停止板が気流から受ける荷重は、図4から停止板受圧面の面積を24441mm2 として、文献5)では $C_d=1.1$ であるが、安全を考慮して $C_d=1.5$ と仮定すれば、(3) 式から10437Nm と求まる。

次に停止板の面面を求めると、図4を参照して

$$L_g = (L_a \times L_c \times L_c / 2 + L_a / 2 \times L_b \times (L_b / 3 + L_c)) / A \quad (7)$$

から、板幅 $L_a = 912$mm、三角部分の長さ $L_b = 456$mm、四角部分の長さ $L_c = 40$mm とすると、$L_g = 166.3$mm となる。

したがって、(4) 式からヒンジモーメントは

19208Nm と求まる。

次に、空気シリンダーは、図5に示す形式とすると、

回転半径 $r = 184$mm として、必要な引張り力 P [N] は

$$P = Mr / h \quad (8)$$
図4 停止板の受圧面

図5 空気シリンダー

図6 停止板の回転速度

から，\(P = 10439 \text{N} \) となる。空気シリンダーを内径\(S_o = 180 \text{mm} \)，ロッド径\(S_l = 45 \text{mm} \)，作動空気圧力\(P_l = 700 \text{kPa} \)，ストローク240mmのものを選定した場合，負荷係数を0.7とするとシリンダー推力\(P_t [\text{N}] \) は

\[P_t = (\pi/4) \times (S_o^2 - S_l^2) \times P_l \times 0.7 \quad (9) \]

から，11456Nとなる。空気力による抵抗の10439Nを上回るので，作動可能である。

1ストローク動作に必要な空気容量\(V [\text{dm}^3] \)は，ストローク\(S_s = 240 \text{mm} \)とすると

\[V = (\pi/4) \times (S_o^2 - S_s^2) \times S_s \quad (10) \]

から，\(V = 5.7 \text{dm}^3 \)である。停止板の回転速度は，図6に示すように0°から15°まで0.25秒で等角加速度で開けるとすると，最大回転速度\(\omega [\text{rad/秒}] \)は\(\theta = 15^\circ \)で

\[\omega = (\pi/12) \times (12/0.25) \quad (11) \]

\(\omega = 2.09 \text{rad/秒} \)となる。以後，等角速度で，60°まで開けるのに要する時間は，0.01秒の制動時間を考慮すると

\[\omega = ((0.25+0.01)/2+x) = \pi/3 \quad (12) \]

から，\(x = 0.37 \text{sec} \)が求まる。全体の所要時間\(t [\text{sec}] \)は，これらを合計したものをで

\[t = 0.25 + 0.37 + 0.01 \quad (13) \]

から，0.63secとなる。この時のシリンダー速度\(\nu [\text{m/sec}] \)は，シリンダーの回転半径240mmと最大回転速度\(\omega [\text{rad//sec}] \)の積から，\(\nu = 501.6 \text{mm/sec} \)と
なり、シリンダー許容速度の500mm/secを若干越える。

又、0.25秒間で直線的に加速すると仮定すると、必要な加速トルクは停止板の一慣性モーメント1.96Nm/secと回転速度2.09rad/secの積を0.25secで割ると、16.39Nmとなる。空気シリンダーの必要推力は、停止板重量と加速度及び壁面圧力の和として求まるが、差圧を10kPaと仮定すると2960Nとなり、起動時の推力は少なからず良い。従って、シリンダーサイズは弱まる時の引力によって決まる。

2.5 装置の構造
前節の検討に基づき、2m×2m空気風洞測定部半
截模型用カートの床板を改造し、形状を図7に示す模型対面型床方式のフラッタ緊急停止装置を製作した。停止板の立ち上がり部分は、亀甲板床面の先端部を切り欠いたホームベース形で、幅912mm、長さ578mmの大きさの開口率20%、SUS304の多孔板である。

駆動方式は空気シリンダー駆動で、動作角度範囲は0°～60°であるが、45°～60°の範囲は予め手動で角度を調節設定する必要がある。手動操作によるON−OFF操作方式の動作速度は、0°～15°までの開動作について、約0.3秒である。本装置の使用範囲は、マッハ数0.1～0.9、総圧40～100kPa、総温度40℃～60℃である。

図8に空気系統図を示す装置は、床下内径180mmφ、ストローク240mmの空気シリンダーを設置して、
風洞既設の空気源から700kPaの空気圧を供給して作動させるものである。容積100dm³のエアレシーパータンクから空気シリンダーまでの機器は、全て半截換型用カートの下に取付けており、カート移動時には空気配管を外すだけの構造になっている。空気シリンダーへの空気の供給は、5ポートの電磁弁を切り換えて行う方式であり、この制御は計測室の手元操作盤の押鉗操作によって行う。
図9に電気配線系統図を示す。先ず、1階のA分電盤のナイフスイッチ（CP）を入れて、次にその横に設置した機側制御盤の電源スイッチ（CP）を投入し、次節に示す操作手順に基づいた操作を行う。主要な機器は、可動壁、回転軸、軸受け、軸受けハウジング、駆動装置の空気シリンダー、同ブラケット、操作空気装置の電磁弁、スピードコントローラー、サイレンサー、エアレシーパータンク、ゴムホース、空気配管、操作箱及び機側制御盤より構成されている。

2.6 装置の操作手順
この停止板は、立ち上がり速度が早く、面積及び操作力も強いので、操作時には人間が離れていないと危険なため、次のような操作手順を決めて操作することにした。
① 半截換型用カートを測定部にセットして、通常の電源ケーブル等を接続する。
② カート床の停止板とカートの床板を結合しているボルト8本を外す。
③ 風洞操作空気貯蔵器の「フラッター緊急停止装置」のバブルを開け、測定部配管に空気を供給する。
④ A分電盤内の「フラッター緊急停止装置」のNFB（AC100V）をONにし、その横の「フラッター緊急停止装置用機側操作盤」（図10）内のCPをONにする。
⑤ 「フラッター緊急停止装置」の空気供給バルブを「開」にし、半截換型用カート内に人が居ない事を確認してから、ワンタッチクランプの空気連手を接続し、貯気用タンクのオートドレン弁の空気音で供給を確認する。
⑥ 「フラッター緊急停止装置操作箱」の表示ランプが点灯していることを確認する。（図11）
⑦ 風洞試験に入る前に2～3回、停止板の開閉操作を
この式に停止板の回転半径 $R=240$mm、空気シリンダーの固定点と停止板の回転中心との距離 $L=489.18$mm、$a=\tan^{-1}(370/320)=49.14^\circ$ を代入して、停止板開度とシリンダーストロークを求めることがなる。$\theta = 15^\circ$ の時は $S=62.5$mm となり、$\theta = 30^\circ$ の時は、$S=124.1$mm となり、$\theta = 45^\circ$ の時は、$S=181.7$mm となる。$\theta = 60^\circ$ の時、$S=232.9$mm となる。必要な開度に対応して図 12 に示すストローク調整ストッパーを回して S'寸法を調整する。S'寸法は、(14)式で求めた S と同じである。ストローク調整範囲は、30° から 60° の間で、124mmから234mmの間である。
図13 開閉速度の調節方法

図14 停止板開速度の調節

図15 停止板開速度の調節

この結果から、通風時における停止板の立上がり角度は、全開までの所要時間が0.32秒と短い45°とすることとし、スピードコントローラーの調節つまりは、一度いった側から早め側に7回転した位置に設定した。この状態で空気タンクへの充填時間は、0から650 kPaになる。
まで約5分間、1回の開閉により空気タンク圧力低下が約100 kPa。その時の空気タンクへの空気補充時間は約1分間という設定となっている。

図16は、立上がり角度45°の状態から停止板を閉じた時の無風状態での動作状況を示す。開閉の動作は、早くする必要がないので、スピードコントローラーの調節つまりの位置は一番遅い側から1段戻るのところに設定されている。この場合の所要時間は、1.44秒であり、60°の場合の所要時間は2.1秒である。

3. フラッタ緊急停止装置の特性試験

3.1 模型なし特性試験

図17に通風時の停止板の動作特性を示す。無風状態での動作は、図15に示したように停止板を閉から開方向に動作させた時、15°までの立ち上げに要する時間は0.12秒、45°までの立ち上げ時間は0.32秒で、最大速度はシリンダーロッドで560 mm/sであった。これに対して、図17に示すマッハ数0.9、風洞総圧80 kPaの時には、空気力を受けていっているので無風時よりも立ち上げ時間、速度とも早くなってしまい、15°までの立ち上がりが0.08秒、45°までが0.29秒、立ち上がり速度はシリンダーロッドで623 mm/sとなっている。

風洞試験の結果の中から、停止板立ち上げによりマッハ数及び圧力が低下した停止板効果の一例を示す。図18は水平に一定流マッハ数をとり、縦軸は停止板を立ち上げた時のマッハ数低下量である。総圧を変えて停止板の効果は変わらずマッハ数0.9の場合に最大0.15（約17%）まで減少することが分かった。これは、実験結果に基づくマッハ数の低下量の推算値が近い值である。図19は、同様にして圧力低下量をプロットしたものです。
ある。この結果は圧力の低いものから、圧力の高いものまで、動圧低下量はほぼ比例的に増加して、比率にするとき最大で約17％の低下率となっている。動圧の低下量は、動圧の上昇に比例して増加しているので、圧力を上昇させる風洞試験を行う時には、停止板効率は模型に対して安全側である。

3.2 模型なし騒音及び振動特性
フラック緊急停止装置の特性試験に際して、本速音速風洞で用いるのは初めてなので、異常の有無を調べるため測定部前後間に騒音計を設置して、進風中の停止板開放時の騒音を測定した。又、測定部カートク井に加速度計を設置して振動を測定した。騒音測定の結果を図20に示すが、この図は圧力80 kPaの時のマッハ数と騒音レベルである。マッハ数が低い0.4位までは、停止板開放時の騒音レベルにはあまり差異がなく、マッハ数の上昇につれて開時のレベルが高くなる。マッハ数0.7になると開時の騒音レベルの差が約16dBと大きく、それより上のマッハ数では再び差が小さくなってくる。これを詳しく見ると、圧力100 kPaの時の音圧と周波数の関係について、停止板開放時の比較を次に示す。停止板開放時の図21に示し、停止板開放時の図22に示すが、この両図を比較すると音圧レベルは600Hz以上の周波数では、停止板を立てた場合に全般的にレベル上がっている。これは測定部内に大きなブロックケージのため、翼模型の大音響をとることは難しく、急激な風速低下と翼前縁からの剥離流れによる気流音や、停止板の立上がり部分に開いた穴から、測定部カート床下から外に流れ出る気流がカート下部から後部に向かって流れれる時にカート支持柱等にぶつかる音、カート全体の振動音などが合成された騒音と考えられる。

又、カートク井に設置した加速度計出力をについて、停
止板開の時を図23に示し、停止板開の時を図24に示す。両図を比べて見ると、停止板開の時には、停止板開の時に比べて、特定の周波数のところでピークが見られるほか、マッハ数が上昇するにつれてピークの高さが増加している。平均的なレベルは、停止板開の時の方が高いが、ピークレベルで見るとその差は10～20 dBの範囲にある。これは、停止板開けたことにより、気流状態と異なった気流状態となって、カート内外を流れる気流が複雑な流れを作り、カート各部に細かい振動を起こすためと考えられる。その他、騒音の変化と同様に停止板が大迎角をとることによる振動そのものがカート全体に影響していることも考えられる。

3.3 フラッタ制御翼模型

今回、遠音速風洞で制御則を実証するため用いた模型は、図25に示す形状のものである。前線翼端部にACサーボモータで駆動する舵面を備え、その翼端部内部に複数の翼面が設けてある。翼弦38%の位置に弾性桁があり、この桁の7ヶ所に曲げと引張歪を計測するゲージが貼られている。また翼端方向66%と90%位置の2ヶ所に各2個づつ計4個の加速度計が取り付けられている。フラッタ制御則の検証試験は、図26に示す加速度計及び歪計の信号を取り込み、あらかじめ計算で求めた制御則に従って、サーボモータをコンピュータ制御して舵面を駆動する。模型の加速度と歪の信号は、データレコーダ及びコンピュータに取り込み、実時間処理によりフラッタ予測を行い、風洞試験の効率化を図っている。

3.4 フラッタ制御翼模型試験

フラッタ制御則の効果を調べる風洞試験は、図27に示す手順で行われる。まず、舵面を制御しない状態で低い風速（マッハ0.6、低い総压80kPa）で風洞を起動し、模型の加速度計及び歪計の出力及び模型の振動状態を監視しながら、総圧を低くしたままでゆっくりと風速を上げる。
昇する。設計点のマッハ数まで風速を上昇してフラッタ現象が起らなければ、次にマッハ数一定で風洞総圧を徐々に上昇し、フラッタが起きたら、停止板を立ち上げる。その時のマッハ数と総圧を制御するまでのフラッタ限界値とする。フラッタが停止したら、停止板を立ち上げたまま、風速と総圧を最初の低い状態に戻すので、停止板を戻し制御を引き継ぎ飛行状態にして総圧を低くしたまま風速を上昇する。制御しない状態で設計点のマッハ数まで風速を上昇し、次に総圧を徐々に上昇する。フラッタが起きたら、停止板を立ち上げる。この2つの試験の違いを制御によるACT効果とする。

停止板を用いた模型試験は、1993年2月に非制御状態で実施した。フラッタ抑制及び制御を必要とする各種の基礎データを取得した後、前述の手順に基づいた本試験が実施された。マッハ数0.8、風洞総圧92.5kPaの時にフラッタ現象が起こり、直ちに停止板を立ち上げた。模型の振動は激しく急激に起きたので、模型と風洞の破損を恐れ、風洞を緊急停止した。この試験の段階では、停止板の性能は確認出来なかった。

この時期は、試験の猶予期間がなかったので、詳しく調べる時間もなく、マッハ数下降によるフラッタ停止を確認出来なかった。しかし、これは一般的に高音速領域での特異現象とされる。遷音速ディップによるものではないかと考えられた。それはフラッタ動压が遷音速領域で急激に変化し、翼面上の衝撃波が一番に生じるもので、試験結果より起ることが知られている。図28のように風速の高い領域で急激にフラッタ動圧が上昇しているが、その下の風速では非常に低い動圧となっており、フラッタを停止するためには、目盛範囲まで広く必要がある。

尚、フラッタ試験では、急激なフラッタ現象による模型の破壊その他の不測の事態に対して、設備の保護をはかる必要があり、風洞第1コーナー部に図29に示す細かい金網（メッシュ）を貼り付けて安全対策を施した。

4. フラッタ緊急停止板の改造

前述のフラッタ翼模型による試験では、停止板によるフラッタ抑制効果が明確でなく、次試験の安全を考えて停止板の動きが検討された。停止板立ち上げ時のマッハ数及び風洞の圧力低下量を大きくするためには、ストローカ調整して、立ち上げ角度を45°から60°に増加すれば良い。しかし、最初の立ち上がり所要時間は同じであり、そのため瞬間的な立ち上げ効果が期待できないので、停止板の面積を増加する改造方法を検討した。

4.1 改造の検討

面積を増加するためには、現状の停止板を加工して大きくすると良いが、風洞の構造上的制約があるので、最も単純な方法として、現状の停止板の上に板を貼り付けて増加する方法を考えた。この方法ならば、面積増加する板を別途製作して、現状の板の上に取付けられ良いので、簡単な作業で済む。しかし、停止板を駆動する機構はそのまま使用したいので、空気シリンダーの能力等について検討を行った。先ず、改造停止板が受ける力F [N]は、式(3)に50%面積増加分となるA=366624 mm²を用いて、その他は同一条件として計算するとF =15647[N]となる。一方、式(9)で求めた空気シリンダーの推力（引力）は、Ptl=11456[N]なので、同一条件では
使用出来ない。そこで、使用条件を検討した。測定部マッハ数 $M=0.9$、風洞総圧 $P_0=70kPa$ すると、$F=11504N$ となるので、それより低い条件ならば使用可能なことが分かった。その結果、50%面積増加を採用することになり、図30に示すように三角部分を延長して、2枚の板を張り付ける構造にした。最初の停止板の多孔板、厚さ14mmのステンレス製であったが、その上に厚さ12mmの鉄製の板をボルトナット25組で結合し、振動等による溶着を考慮して、ネジロックを塗布して固定した。面積増加板の前縁部は、半頂角10°にして床面の気流が滑らかに流れるようにしたが、後端部は切り落としため、板厚分の段差付きとなっている。実際の面積増加は、取付け部分の加工変更等により、約42%となった。

4.2 模型なし特性試験（延長停止板）
面積増加した延長停止板の特性試験結果を次に示す。
図31はマッハ数の低下量を示すが、マッハ数0.9の時、0.24マッハ低下しており、延長前と比べて約6割増している。延長停止板の実験式によるマッハ数低下量の推算値も図31に示すように、面積増加分だけ低下しており、風洞試験結果と良く一致している。図32に動圧の低下量を示すが、マッハ数低下量と同様に低下しており、効果が良くになっている。停止板の大小によるマッハ数と動圧の低下量を比較したものを図33に示す。何れも面積増加に見あった分だけ低下量が増加している。これは、今後試験する模型の特性に合った必要低下量に、
5. フラッタ制御検証試験

補助停止板の効きが確認出来たので、1993年10月（第3次試験）にフラッタ制御検証試験をACT研究会が行った。風洞の試験結果を、写真1のように測定部天井壁にフラッタ翼模型、床壁に停止板を設置して行い、模型の操舵翼でフラッタ抑制制御した場合と抑制しない場合のデータを取得し、抑制制御した場合にフラッタの動圧が上昇したことを測定した。この時、非抑制状態での動圧が26.68 kPa、抑制状態の動圧が29.72 kPaであり、両者の差を非抑制状態の動圧で除して百分比にしたものでフラッタ動圧上昇率とすると、この場合は11.4％であった。その他、過音速フラッタ動圧流し現象（ディップ）試験では、マッハ数0.75から0.85の間を0.025マッハ刻みでデータを収集し、マッハ数0.81附近のフラッタ動圧最低値の存在と、そこからマッハ数を低下するとフラッタ現象が急激に起こることを確認した。図34は、ディップ確認試験時の大気圧フラッタ発生時の停止板立ち上げ効果を示したものであるが、停止板立ち上げによって動圧がマッハ数が減少していることがわかる。フラッタ停止の1例としてフラッタ番号#18の翼端込みの加速度計出力を図35に示す。この翼の過音速フラッタは、リミットサイクルであるが、停止板立ち上げによって直ちにフラッタが収束していることがわかる。

6. まとめと今後の課題

今回、製作したフラッタ緊急停止装置の有効性は、以上の通りである。また、装置としての限界もあることが分かった。それは、停止板立ち上げのトリガー信号を出してから、実際に立ち上がるまでに0.2秒の遅れを生じていることである。図36に通風時のデータ記録を示す。
図36 通風時のデータ

す。左から2番目のトリガー信号が入ってから、左側の停止板の立ち上がり動作を見ると、測定で動作していることがわかる。この原因として考えられたことは、空気シリンダーを用いて動かしているので、途中の空気配管長さ、空気配管数などが影響しているものと推測される。この原因を確認して改善すれば、より良い装置にすることが出来る。

平成5年度に遠音速風洞測定装置改修作業（その6）の一環として、第3カートを改修することになり、その中に空力性能試験装置を組込むことになった。このため、このカートにもフラックス緊急停止装置を設置する必要が生じ、さらに適当な動作させるため油圧方式の装置とすることにした。このカートでは、模型も水平取付式になるので、横壁に停止板を取付け、面積も0.5㎡を約2倍の大きさとした。

以上の結果から、次の結論を得た。

(1) 第3次実験で用いたNAL式フラックス緊急停止装置（停止板延長型）は、極めて有効であることが確認出来た。この装置により、風洞を停止することなく約30分毎にフラックス試験が可能になった。

(2) 但し、停止板立ち上げのトリガーがONしてから0.2秒後に動作開始なので、今後、模型の加速度信号等により自動的に動作させることを考えると、立ち上がりまでの時間短縮を図ることが必要がある。

(3) このため、平成5年度の第3カート改修作業に合わせて、油圧駆動方式の装置により、立ち上がり速度30ミリ秒以内、開方向の最大開き速度160度／秒以上で動作する装置を整備した。

試験装置の製作に当たっては、川崎重工業㈱ 西川和男氏、武蔵機工㈱ 広岡詳雄氏の協力を戴いた。この場を借りて感謝の意を表する。なお、試験装置の製作に当たっては、当所管理部門各課、井上茂三科長、協力研究遂行に松下慎司特別研究官を始めとする当所ACT研究会メンバーの助言があった。

参考文献

1) 航空宇宙技術研究所：2m×2m遠音速風洞の計画と構造、航技研報告 TR-25、Mar. 1962。

2) 小沢光雄、鈴木誠三、安藤泰勝、菊池茂男、藤井謙司、松下 洗、遠音速風洞フラックス緊急停止装置予備実験（その1）フラックス停止板基本性能試験、航技研報告 TR-1197、Apr. 1993。

3) 安藤泰勝、鈴木誠三、小沢光雄、藤井謙司、鈴木弘一、外立政隆、松下 洗、島崎信男：遠音速風洞フラックス緊急停止装置予備実験（その2）フラックス緊急停止装置の開発、航技研報告 TR-1200、May. 1993。

4) 遠藤 浩：風洞概論（総編）、航技研技術資料 N-34、Nov. 1985。

5) 米本浩一、赤塚隆彦、平岡義一、三戸成也、高アスペクト比翼の遠音速フラックス計算法と実験結果、川崎技報 No.105、1990。

6) 安藤泰勝、松下 洗、藤井謙司、外立政隆、鈴木弘一、鈴木誠三、松崎雄一雄：遠音速ACT模式の実時間フラックス予測、第34回構造強度に関する講演会、Jul. 1992。

7) 藤井謙司、安藤泰勝、松下 洗、外立政隆、鈴木弘一、鈴木誠三、小松行夫、鈴木正光、小池 陽：遠音速フラックス制御翼の予備実験、第30回飛行機シンポジウム、Sep. 1992。
8) Hiroshi MATSUSITA, Masataka HASHIDATE, Kenich SAITO, Yasukatsu ANDO, Kenji FUJII, Kouichi SUZUKI and Dario H. BALDELLI; Transonic Flutter Control of a high aspect ratio wing: Mathematical modeling, control law design and wind tunnel tests, 19th ICAS congress/AIAA, Sept. 1994.