NAL TR-111T

UDC 533.6.013

TECHNICAL REPORT OF NATIONAL
AEROSPACE LABORATORY

TR-T11T

An Asymptotic Solution of the Nonlinear Equations

of Motion of an Airplane

Hiroshi ENDO

August 1966

NATIONAL AEROSPACE LABORATORY

CHOFU, TOKYO, JAPAN

This document is provided by JAXA.



List of NAL Technical Reports

TR-85 Linearized Aerodynamic Theory
of Rotor Blades (II)
—Lifting-Line Theory—

TR-86 A Method for Predicting the Off-
design Performance of Multi-
Stage Axial-Flow Compres-
sors Operating in the Tran-
sonic Flow

TR-87 Theoretical Study of Two Di-
mentional Panel Flutter and
Panel Divergence in Subsonic
Flow (II) Compressible Flow
Case  (III) Experimental
Study

TR-88 Qualitative Examinations on the
Results of Ground Vibration
Tests of Tail Wing-Fuselage
Combination Structure

TR-89 An Experimental Investigation
on Vertical Gusts and the Air-
plane Response

TR-90 The Shape of Mechanical Hys-
teresis Loop, its deformation
due to Stress Repetition and
Resulting Incrase in Flow
Stress .

(Part 1. Experiment, Part 2.
Theory for Torsion)

TR-90T The Shape of Mechanical Hys-
teresis Loop, its deformation
due to Stress Repetition and
Resulting Increase in Flow
Stress
(Part 1. Experiment, Part 2.
Theory for Torsion)

TR-91 Flame Propagation into the Gap
of Solid Propellat Grain (I)

TR-92 An Approximate Calculation for
Surporsonic Flow Past Bodies
of Rocket Vehicles (I)
—Linearized Flow with Arial
Symmetry—

TR-93 Dynamic Testing at Transonic
Speed

TR-94 On the Camber Lines of Semi-
Infinite Sweptback Wings
which give Uniform Spanwise
Load Distribution

TR-95 A Few Comments on the Longi-
tudinal Handling Qualities of
Airplanes

TR-96T A Generalized Functional For-
malism for Turbulence

TR-97 A Theoretical of the Compres-
sible Flow Through the Axial
Turbo-Machines (I)
—Non-Swirling Fluids in
Ducts—

TR-98 Some Effects of Taper Ratio on
the Transonic Flutter Charac-
teristics of a Series of Thin
Cantilever Wings Having a
Sweptback Angle of 45° and

spect Ratio 4.0

TR-99 A Study of Dial Legibility

TR-100 Linearized Aerodynamic Theory
of Rotor Bladed (III)
—Method for Solving Lifting-
Equations—

Teruo ICHIKAWA Mar. 1966

Masakatsu MATsUKI, Shoichi May 1965
FuJsu & Mitsuo Gomr

Takao IsHII June 1966

Taketoshi HANAWA & Shin- June 1965
ichi KOSHIDE

Koichi ON0 & Kosaburo June 1965
YAMANE

Fujio NAKANISHI, Yasuo July 1965
SATO & Fumio NAGAI

Fujio NAKANISHI, Yasuo June 1966
SATO & Fumio NAGAI

Tomifumi GODAI July 1965
Takashi TANI Aug. 1965

Yasujiro KoBasHI, Nagamasa Oct. 1965
KAwANO & Takenori Nisi

Toshio KAWASAKI QOct. 1965
Hiroshi ARAKI Nov. 1965
Iwao HOSOKAWA Dec. 1965
Shoichi FuJil Dec. 1965

Eiichi NAKAI, Toshiro TAKAGI Dec. 1965
& Yasukatsu ANDO

Noriko MivosHl, Masanori Feb. 1966
OKABE & Sumiko IsHIKAWA

Teruo ICHIKAWA Feb. 1966

This document is provided by JAXA.



An Asymptotic Solution of the Nonlinear Equations

of Motion of an Airplane®

By Hiroshi ENDG**

Summary

A method of solving the nonlinear equations of motion of an airplane
is studied assuming that the nonlinear effect is small, and that the damping
of a single oscillatory mode is weak. This is essentially a practical
extension of the theory of nonlinear oscillation by Bogoljubov and
Mitropol’skii, to airplane dynamics.

The procedures of constructing the asymptotic solution of the critical
mode are illustrated. A numerical example is given in respect to the
Duth roll stability in a low speed flight condition, in which the nonlinearity
is introduced by the transient stall at the wing tip due to the disturbance
in roll. Especially estimated is the time to half, or otherwise the time
to double, of the amplitude of perturbed motions as a criterion of stability,
which is hereby proved to be dependent on the initial amplitude of dis-
turbance. This makes a distinct feature of nonlinear oscillation.

1. Introduction

In the ordinary linearized theory on airplane dynamics, the perturbations are assumed
to be small and the nonlinear terms are usually neglected. In some case, however, the
neglected terms may be of some importance, and then we have to deal with a system
of nonlinear equations, the general solution of which can hardly be obtained. In the
following, an asymptotic method of solving them, which applies to the significant-
although limited-cases, will be discussed.

There appear a number of modes in the motion of a system with many degrees of
freedom such as an airplane. These modes couple one another in nonlinear cases. This
gives rise to a great number of higher order terms in the equations, and makes it
difficult to solve them.

Bogoljubov and Mitropol’skii treated the natural oscillation of a nearly linear system
with many degrees of freedoms in their book. They show that the solution can be
constructed asymptotically in a similar manner as a system of a single degree of free-
dom, provided that there exists a fundamental tone of the oscillation, that is, the state
is realized in which all degrees of freedom are excited with one and the same frequency.
The motion of an airplane is composed of many modes of oscillation, and the state in
which only one of them is exclusively excited is not realized in general. However,

* Received 20th June, 1966
** The Second Aerodynamics Division
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2 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-111T

when a specified mode is on the margin of instability, this mode survives the others,
and as the result, except at the very outset of motion, the state of a single periodicity
comes out. Dutch roll, for example, is damped comparatively more weakly than the other
modes of an airplane, and its stability sometimes comes into question. Thus, it is not
pointless to treat the case where the perturbed motion can be approximately expressed
by a single mode of Dutch roll. We shall study in the following how to estimate the
nonlinear effect on the stability of an airplane in such a flight condition.

2. Symbels

b: wing span
¢: wing chord
¢q: local coefficient of drag
¢;: local coefficient of lift
D: differential operator (=d/d7)
i4, 1c: moment of inertia coefficients for rolling and yawing axis, respectively
ig: product of inertia coefficient about rolling and yawing axes
L: rolling moment
l., {5, I nondimensional rolling moment derivatives due to side slip, rolling and yawing,
respectively
N: yawing moment
e, Ny, %,: nondimensional yawing moment derivatives due to side slip, rolling and
yawing, respectively
p, * angular verocity in roll and yaw, respectively
s§: wing semispan
S: wing area
v: inerement of side slip velocity in disturbed flight
V: resultant velocity of aircraft in the steady flight condition
Y»: nondimensional side force derivative due to side slip
a: angle of attack
a;: induced angle of attack
¢: parameter of smallness of perturbation terms
¢: angle of bank
p: lateral relative density
r: aerodynamic time

3. Estimation of the nonlinear terms

When an airplane flying at a high angle of attack undergoes a disturbance including
rolling oscillation, the change in the local angle of attack may result in the momentary
stall of the wing tip if the disturbance is large enough. Then the spanwise distributions
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An Asymptotic Solution of the Nonlinear Equations of Motion of an Airplane 3

of lift and drag change irregularly, which in turn result in the nonlinear rolling and
yawing moments.

The load distribution on a wing is determined by the local angle of attack at each
spanwise position. It changes mainly due to rolling in case of a lateral motion; while
the side slip and yawing, which are the motions in the plane containing the wing, do
not cause any appreciable change in the angle of attack. So we may consider that the
nonlinearity originates from the rolling motion alone. To estimate the linear terms,
however, we have to consider the change in the angle of attack due to side slip and
yawing because the wing dihedral, sweep etc. have to be taken into account. Now we
proceed to estimate the nonlinearicy in the aerodynamic forces and moments due to

rolling. Then, we can put
aly) =ao.—ady)+py/V. (1)

a;{y) on the right hand side is expressed after Prandtl

_ b {2 d [ee\ dy
a;(y)y= 3 S_m% (Tb—‘) —:;—-y (2)

Although it is questionable whether the above expression is valid for the case where the
rolling and the tip stall are involved, we assume it because we have no appropriate
alternative. It may be necessary to improve the estimation by means of a more ap-
propriate theory or, if any, experimental results.

The lift and drag acting on the wing elements are multiplied by the spanwise arm
length, and then integrated to give the rolling and yawing moments. Thus we have

1 b/2
L=—-pV“g /(Cz+c.zpy/V)cydy (3)
—-b/2
1 b/2
N:——z—prg (cipy/V —ca)cydy (4)
J—b/2

To carry out the above integrals, we have to know ¢; and ¢; as functions of ¥, which
can be obtained from the experimental data of two-dimensional wing section if a« is
known. So we need to solve simultaneously (1) and (2) for a using the numerical re-
lations between a and ¢;. The integrand of the right hand side of (2) is also a function
of a, and then this system of equations forms a sort of integral equation. We solve
it by means of iteration, that is, starting from the tentative values of ai(y), we repeat
the calculation according to the following flow chart until it converges on definite values.
Eq. () Eq. (2)

a;(starting values) - a(y; p) — aly; p) —ai(y; p)
1 I

The above procedure is repeated for various values of the parameter p. In the numerical
example which follows, we use the airfoil section data of NACA 65-209, and some
extrapolation is made in order to get values beyond the stalling angle of attack. The
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4 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-111T

wing is assumed to have the aspect ratio of
4, the taper ratio of 0.6, no sweep and no
twits. The lift coefficient C. of unperturbed
flight is taken as 1.0.

Using the angle a(y) thus obtained, the
-+ ( D spanwise distributions of ¢; and c¢; were
calculated. The load distribution curves are

¢, C shown in Fig. 1, where the values of p are

|

inserted by the sidé of corresponding curves.
It is seen in this figure that, the load at
the tip of the descending wing decreases

9 / 8'2 abnormally as p increases beyond 0.2. The
gi 04 corresponding change in rolling and yaw-
O:G 06 ing moments are shown in Fig. 2, and
08 08 the p-derivatives of them in Fig. 3. In
1.0 » the range where p is small, they are prac-

tically constant: this satisfies the re-

quirement of the linearized theory. Non-

Fig. 1. gpanwise load distribution on a linearity appears as p increases over 0.2.
rolling wing. The numerals by theside On account of the symmetry of the lateral
of each curves are the rate of roll p. motion, both I, and n, are even functions of

p. It follows that the nonlinear terms begin with the quadratic terms of ». From the

curves in Fig. 3, we approximate these derivatives by the following expressions.

1,=—0.354+0.210p* (5)
np,=—0.0643+40.305p? (6)
-0.02+
G
-001F
Cn
0 1 | |
0 ol 02 0.3 N

p (rad/sec)
Fig. 2. Rolling and yawing moments of a rolling wing.
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_0_4 |
~-03F
~-021
“0} [ Cnp
0 T/\ !
0 0.l 02 \ 03
p(rad/sec

Fig. 3. p-derivatives of the rolling and yawing moments of a rolling wing.

It must be noted that the rolling and yawing moment derivatives, I, and #n,, due
to the side slip may be affected by the stall of the wing tip. This effect is, however,
not taken into account, for it is so complicately masked by the side wash over the
fuselage and by the increased contribution due to the fin, that their analytical expres-
sions are not available in this stage of our study. Therefore, the discussion which
follows should be regarded not as a perfect treatment of the Dutch roll stability, but
as an illustration of the mathematical procedures and the distinctive features of non-

linear dynamics.

4. Asymptotic solutions of the nonlinear equations
of motion

The separation of the equations of motion into the longitudinal and lateral groups,
which is usually done in treating the stability of an airplane, is based on the condi-
tions that:

i) there exists a plane of symmetry, and
ii) the longitudinal and lateral motions are not coupled together through the aerody-
namic and inertial nonlinear effects.

The system of equations of motion including nonlinear terms can not be separated
into two grouys because of the limitation ii). In our approximation, however, only the
nonlinear effects of aerodynamic origin are considered, which contain no coupling terms
as seen in Eqgs. (5) and (6). Consequently, we can treat the longitudinal or lateral
equations of motion separately as in the ordinary linearized theory. When the coupling
is to be involved, we can deal with the complete system of equations of motion.

We shall be concerned merely for simplicity with the motion with control fixed.
Then the lateral equations of motion are
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A . A 1
D=y )o—yp+(p—y,)r— EﬂCL¢=O

—pb+ (@D — 1) p— (e D+1)7 =el,p° (7)
— o — (@D +np)p+i.D—n,)# =en,,p? j
f) —Dg=0

where the higher order coefficients /,, and n,, originate from the higher order terms
in Egs. (5) and (6) respectively, and ¢ is the parameter of smallness representing the order
of perturbation terms. As p is of the order of 0.1, ¢ is taken to be 0.1.

The airplane in question has a weakly damped Dutch roll mode as previously men-
tioned, and the homogeneous system of Eq. (7) has a nearly harmonic solution. Then,
modifying one or more of the stability derivatives in Eq. (7), we can make an harmonic
oscillation system of it. We execute this by increasing I, by a small amount edl,, thus

lpo=lp+edl, (8)

We regard this imaginary harmonic system as the unperturbed one, and try to approxi-
mate the real one by adding to it the perturbations consisting of the nonlinear effects
and the damping which is introduced by the excess damping in roll derivative e4i,.

Substituting Eq. (8) into Eq. (7), and putting the perturbation terms together, we
have

R A . 1
F(D'—yv)v—ypp+(ﬂ_yr)T_E'ﬂCL¢:0

—pl 0+ (24D —1o0)p— (D +1)7 =e{—dlyp+1p,0°) (9)
—ﬂnu?}}_(iED+np)ﬁ+(icD—nr);' :5nppﬁ3
) —Dg¢=0

This system is manipulated to have the general form as follows,
4
ka—lzc“xl:‘efk(ml, Loy T3, Xy, t) (k':l, 2; 3’ 4) (10)
=1

where x,, z,, x;, and z, stand for 9, p, # aud ¢ respectively, and

Cn=Ye, C=Yp/pt, C1u=Y/p—1, €.,=CL[2,

ey =pltcle+1en)/(lalc—1%E), C€r2={(lclpotien,)/{iatc—1i2g),
Cosltl, +1em,) [ (Taic—1%E), ¢€2=0,

Ca=piel, +ian}(alc—12E), Caa={lelp+Tany)[{Tatc—1%E),
ess=(iel-+ian,)/(Eaic—1%8), €3=0, en=ci=cu=0,
=1,

fa=— {icdlyp+ (iclpp+ienpp) D%} [(iatc — ),
fs=—{iedl;p+)iclpp+ianpp)D*H/iatc —12E).

f,.=f,=0.

The system of Eq. (10) is formally identical to the one treated by Bogoljubov and
Mitropol’skii in the theory of nonmlinear oscillation with many degrees of freedom. So
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we can follow the mathematical procedures developed by them. Since the unperturbed

system
Dzi—Ycun=0 (k=1, 2, 3, 4) (12)
=1

has an harmonic solution, the eigen values 2’s of the homogeneous system of the algebraic

equations
4
12(;(5“—0&-1,2}:0 k=1, 2, 3, 4) (13)
=1

(=1 if k=1, 6.,=0 if k+l), that is, the roots of the characteristic equation

J12)=0 (14)
where
Cr—4 Ci2 Ci13 Cis
. . Cay Cay—4 Ca3 Cyy
d{a) =
. €3 C3y C33—4 C34
[ .
T Cq Cso Cy3 Cyy— 4

contain a single pair of purely imaginary ones i=+%w, Let ¢: and ¢:* (k=1, 2, 3, 4)
denote the nontrivial solutions of Eq. (13) corresponding to 2=iw and i=—iw respec-
tively, then the solutions of the unperturbed system (12} are

2O =a(giei"+oreiv) k=1, 2, 3, 4) (15)

where a is the amplitude, and ¢: and ¢f are the complex constants specifying the shape
of the mode, that is, the relative amplitudes and phases of the disturbed motion, Dutch
roll in our case.

In the perturbed system (10), the energy of motion is consumed or accumulated
incessantly through the perturbations. Consequently, the amplitude a is not constant,
and the momentary angular frequency is no longer independent of the amplitude a
because of the nonlinear effect. Considering that the solutions of Eq. (10) tend in the
limit of ¢— 0, to the solutions of the unperturbed system (15), we expand it in the

power series of ¢ as follows;
Tr=alr){oreiv+¢le ) +exPla, ) +2xPla, O+
+emxi™a, Q)+ k=1, 2, 3, 4) (16)

where the first term of the right hand side is formally identical with the solution (12)
of the unperturbed system, but the amplitude a and the total phase ¢ are functions of
time r. Taking into consideration the fact that the development of the energy of the
system is not independent on the amplitude because of the nonlinear effect, their time

variations are again expanded in the power series of ¢ as follows;
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Da=A,(a)+cAz(a)+.-. ... 17
D¢=w+eB,(a)+*Byla)+ .- - ..
where A,, 4,, -..... ; B, By, ... are constants to be determined. In this way, our
problem has been reduced to that of determining x,(a, ¢), z.(e, ¢), -..-.. ; Aila), Bi(a),

A,(a), Bila), ...... that 2’:s of Eq. (16) with Eq. (17) may satisfy Eq. (10) as functions

of ¢, with period 2z. Substituting Eq. (16) for 2’:s in Eq. (10), we express both sides

in power series of ¢ by means of Eq. (17). Equating the terms of the same power both

sides, we have from the first power terms,
oz

‘"aga

oz xs”
oa a¢
(k=1, 2, 3, 4) (18)

_lg,%x?):fk{xf“’, x3®, 5%, )~

and from the second power terms,

oY 4 ¢ Ofx

2y —
® _lzlcklx§ _IZ:X am (xff))’ x;m, x;ﬂ)’ xé()))xp)
= = l

o¢
oz’ dxsP 9’ oz
% A o¢ Bi= g4 ag B.
(k=1, 2, 3, 4) (19)

Similar expressions follow as to the higher order terms. Substituting Eq. (15) for
z{” tn the right hand side of Eq. (18), and after rearranging, we have

oz’ & .
@ a¢ _Lgfklxgl):{¢l(:l)(a)_AlSDk_lBla’¢k}ew

+ {2V le) - A\t +iBiagpte
+X OMlaem k=1, 2, 3, 4) (20)
m¥x £l

—ol Mmoo

where

O = — {icdl ap;+8(iclpp+1em,5) 0302072} [ (Laic —1E),
05~V = — {icdlyap¥ +3(iclpp+1eNpp) 0° 003} [ (Laic —1%),

O = — {ipdl,apF +3(telpp+1aM0p) 03008} (T atc —1}),

O = — (iclpp+ienpp)03p3p3 [ (Latc —13),

5= = —(iclpp+iENpp) Qa0 (Laic—13),

D5 = — (ielpp+1anpp) 030303 (Tatc—1F),

Q5% = —(telpp+1anpp) AP0 iatc — 1), (21)
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An Asymptotic Solution of the Nonlinear Equations of Motion of an Airplane 9

and other @{™’s are all zero.

The terms on the right hand side of Eq. (20) are all known except 4, and B,.
These unknown quantities will be determined in the following. Replacing ¢ with wz on
the left hand side of Eq. (20), it becomes identical with the unperturbed system (12).
Thus, our problem has been reduced to that of forced oscillation of the harmonic system
(12) by the perturbation forces of the frequencies @ and meo, where o is the natural
frequency of the system, and m is any integer. In case of the resonant excitation with
frequency w, there is no solution in general. We have the solutions only if the pertur-
bation terms on the right hand side of Eq. (18) satisfy the following condition,

201 {0 (@ —Aipi—iaB i) =0 (22)

where y.’s (I=1, 2, 3, 4) are the nontrivial solutions for A=—iw of the system of equa-
tions adjoint to Eq. (18), viz.

Zj}(lﬁu +ew)r=0 _ (23)

From the above condition, we have the expressions for 4, and B, as follows;

A,+iaB, =t§1xl¢§“/1§11’9;’
=—[xa{tcdlyap;+3(icly +ien,5)a%pipF)

4
+ 23 {t£dlp0ps +3(ielpp+ tanp0) a2 0207} ]/(iAiC—igs)lElll?l (24)
Comparing the real and imaginary parts of both sides, we can readily estimate A, and B,.

With the values of A, and B, thus obtained, the solution of Eq. (20) is written down as

7 (0,¢) =Ci(a)pre*+C(@)gte%+¢% 1 S (00 (a) — (4, +iaB) i)

—e# 518 (B (a)~ (A,—iaB) o1} + Tt £ Zulima)0F (o)
= m¥xt =

k=1, 2, 3, 4) (25)

0du(2) | 34(2) }
02 91 | i=ie,

minant defined by (14), and 4, is its minor. C,(a) and C¥(a) are the constants

where Zi{imow)=4x (imw)/d{(imw), Su(iw)z{ and 4(2) is the deter-
to be determined by the initial conditions. Substituting Eq. (25) for z{’(a, ¢) on the
right hand side of Eq. (19), we have the equation for z2{*’(a, ¢), which can be solved in
the same manner as for z{’(a, ¢). A, and B, are again determined by the condition

similar to Eq. (22). Thus we can determine z{". z{®, z{*, and so forth successively.
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Summarizing, the zeroth approximation of our solution is that of the unperturbed
harmonic system (12), viz.
r@=a(gre*+ote ) (k=1, 2, 3, 4) (15)

In the first approximation, the amplitude ¢ and the angular frequency w are regarded
as a function of time. Thus, we have

r=a(r)(pce+ofe~%) (k=1, 2, 3, 4) (26)
with
Da=:A,{a
eA,la) } @7)
D¢=w+:B,(a)

[l

S. Stability of motion: Numerical example

The criterion of stability of motion we are most interested in, is obtained from Eq.
(27). The time to half or the time to double, which are customarily referred to
as the criteria of stability of motion, are estimated from Eq. (27) through direct inte-
gration. The results are as follows:

~fa/2 da
t ag) =t —_—
hatt{@o) Sao cA (a) ’ (28)
t (a)—% e _da )
double(\lp) = 2 € Al (a)

While these values are constant in the linearized theory, they are now dependent on the
initial value @, of the amplitude, that is, the stability of motion depends on the inten-
sity of the initial disturbance. Even if a system is stable for a small disturbance, we
can not presume that it remains so for a large one, and vice versa. We shall illustrate
this in the following.

We are now concerned with the Dutch roll stability of the airplane, the aerodynamic
moments of which have such nonlinearity as described in section 3. The other stability
derivatives and the inertial parameters are, as in the linearized theory,

p =25.6 C.=1.0 ye=—0.39

14=0.124 l. =—0.201 n.=0.043 (29)
ic=0.18 l, =—0.354 n,=—0.0643 )

ig=—0.02 I, =0.199 n,=—0.123

The airplane is assumed to be in a level flight condition at the sea level. The moment
of inertia about the roll axis has been taken larger than usual, with the result that the
damping in roll is reduced appreciably.

The stability of this airplane informed by the ordinary linearized theory is as
follows:
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An Asymptotic Solution of the Nonlinear Equations of Motion of an Airplane 11

spiral mode thatt=11.9 sec
rolling convergence thatt=0.55 sec (30)
lateral oscillation (Dutch roll) thair—41.3 sec

(T =5.2 sec)

As is seen in these data, Dutch roll is slightly stable and the damping is by far weaker
than that of the other modes. It may be observed that the former mode dominates in
the motion except in the very early stage of the disturbance, and so the condition of
single periodicity is approximately fulfilled. Dutch roll becomes neutrally stable if I,
is increased by a small amount of 0.0833. Thus putting [,,=—0.821, and using the
values of (31), the harmonic system (12) becomes

D1+0.399+7—0.500¢ =0
Dp+43.39+2.58p—1.75+ =0 31)
D#—10.93v+0.00704p+0.878> =0
D¢ —p =0

The constants specifying the shape of modes ¢ and ¢F are obtained by solving the above
equations with 4=8.741%, the root corresponding to Dutch roll mode. Regarding a as the

amplitude of the angle of bank ¢, they become

0, =0.209—0.264i | Im
2y =3.74i [
i . (82) .
oy=—0.604—1.014i 5
(‘54:1.0

These quantities indicate the state of excitation
in the lateral three degrees of freedom, which
are shown in Fig. 4 in the vectorial form. Bythe _ , , Y-
way, the solutions y’s of the adjoint system are

"3,
T <

as follows:

71="7.481 \ I or
72=0.148—0.2031

xs=—2.01—0.425¢
¥s=1.0

With ¢=0.1, [,,=2.10, and 7,,=3.05, Eq. (21) becomes

(33) -
Fig. 4. Shape of mode of Dutch roll.

PP ={—1.015(10a) +2.28(10a)*} ¢
} (34)

@ ={1.13(10a)+2.40(10a)®}:
Substituting these in equation (24), and comparing the real or imaginary parts of both
sides, we have

A,(a)=—0.5692—349a* } (35)

B,(a)=—0.195¢—602a*
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sec
lOO — C[pp + Cnpb
()]
a
peo
=
—
o
5 10
S
stable
‘_ 0.05 0. 015  poirad/sec)
0 L0 20 a
initial amplitude
Fig. 5. Relation between the stability of Dutch roll and

the initial amplitude of disturbance

We can now calculate fgouble Or thait by Eq. (28) as functions of the initial amplitude a,.
The result is shown in Fig. 5. The limit of its value as a, — 0 coincides with the one

sec Clor

00

thalf or tdouble

| stable unstable

0.95 0.1 0.5

| 1
0 1.0 20 aq
initial amplitude

poirad/sec)

Fig. 6. Same as Fig. b, but taking into consideration
only the nonlinearity in [,.
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An Asymptotic Solution of the Nonlinear Equations of Motion of an Airplane 13

obtained from the linearized theory indicated by a circle on the ordinate. This coin-
cidence certifies the accuracy of this asymptotic method.

We can see in this figure that tnas decreases as a increases, that is, the motion
becomes more stable. This implies that the energy of oscillation is dissipated through
the nonlinear effects. To examine the cause of this, we shall see what role the individual
nonlinear terms play. In the first instance, we shall retain only I,, out of the two
nonlinear terms, and calculate thair or tgouvle as before. The result is shown in Fig. 6,
indicating that the oscillation damps when p, is smaller than 0.05, but that it becomes
unstable as p, increases beyond that value. This is because of the decrease of damping
in roll due to the momentary stall of the wing tip caused by increased rate of roll p.
This case is a distinct example in which the stability of nonlinear oscillation depends
upon the amplitude.

In the second place, we retain n,, alone, and repeat the calculation, the result of
which is given in Fig. 7. Any sign of destabilization is not revealed as @, increases.

secC

100 Crop

E

a
T FITlT]

thalf or tdouble

T

stable

T

0.05 0.l 015 py(rad/sec)

} 1 —_ 1
1.0 20 a,

initial amplitude

(@)

Fig. 7. Same as Fig. 5, but taking into consideration
only the nonlinearity in n.

We shall examine this case in further detail. As is seen in Fig. 2 and Eq. (6), the
nonlinear component of yawing moment N is proportional to the third power of p, and
is thought to be in the same phase with p. Dr and p are almost out of phase each
other (Fig. 4). Therefore, we can presume that Dr also is opposed to p3, and thus
to the nonlinear component of N. It follows that the nonlinearity in n, has the damping
effect on Dutch roll.
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In case of Fig. 5, where both [,, and n,, are involved, we can observe that the
stabilizing effect of n,, is stronger than the destabilizing one of {,,, resulting in stabiliza-
tion of Dutch roll. This conclusion, however, has been deduced on the assumption that
the nonlinear effects are weak. It is, therefore, evident that this does not hold in such
a case when the stall developes over the greater part of the wing, and the stability
derivatives are excessively affected.

6. Conelusions

1. An asymptotic theory on nonlinear oscillation, proposed by Bogoljubov and Mitropol'skii,
is shown to be applicable in the dynamics of an airplane, to show how the nonlinearity
in the aerodynamic forces affects the stability of an oscillatory mode, on the assumption
that it is on the margin of instability.

2. The applicability of this method is of course limited because the damping of the
mode in question is assumed to be weak. But this becomes a powerful tool when we
examine whether the stability boundary of this mode shifts to the stable side or not
owing to the nonlinearity in aerodynamic forces; for the stability is neutral on this
boundary and the assumption is valid in the neighbourhood of it.

3. It is illustrated that the stability depends on the amplitude of disturbances. This
makes a striking contrast to the linear oscillation, the stability of which is in-
dependent of it.
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