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Predictor-Corrector Form of the

Crank-Nicolson Scheme*

By
Kenichi MATSUNO**

ABSTRACT

This paper is concerned with the numerical accuracy of a predictor-
corrector form of the Crank-Nicolson Scheme for solving boundary layer
equations.

According to Blottner, the Crank-Nicolson Scheme, with a predictor-
corrector step to deal with nonlinearity, exhibits only first-order accuracy
unless the boundary layer continuity and momentum equations are solved
in a coupled manner. In the present paper, a predictor-corrector form of
the Crank-Nicolson Scheme, based on a coupled solution for the continuity
and momentum equations, is presented for both the incompressible and
compressible flows. The present scheme is then subjected to a computer
experiment using the problem of the laminar boundary layer development
in a linearly retarded edge velocity field. The results are then compared
with the Davis Coupled Scheme. It is shown that the present scheme
posesses second-order accuracy and is more efficient than the Davis
Coupled Scheme.
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) the corresponding Crank-Nicolson finite
1. Introduction . . .
difference equations are also nonlinear

With the emergence of highspeed  and an iteration procedure is necessary at

digital computers, numerical solution of
partial differential equations governing
boundary layer flows has become quite
commonplace. A number of schemes have
been proposed. Implicit finite difference
schemes of second-order accuracy are now
widely used from several points of view
such as the accuracy, the efficiency and
the simplicity. Among them, the Crank-
Nicolson Scheme (hereafter designated by
the abbreviation ‘“CNS”’) has been succes-
sfully applied to various types of problem:
transient heat conductions, chemically
reacting flows, boundary layer flows and
so on. Since the boundary layer equations
in which we are interested are the system
of nonlinear partial differential equations,

each step along the surface. It has been
demonstrated by Blottner!’ that the only
one iteration for solving the nonlinear
algebraic equations gives first-order ac-
curacy in the flow direction and a number
of iterations are necessary to achieve
second-order accuracy when the boundary
layer continuity and momentum equa-
tions are handled in an uncoupled manner.
According to Blottner this fact is due to
the convergency of the iteration proce-
dure and the strong coupling between the
boundary layer continuity and momen-
tum equations. This also holds true for
the predictor-corrector method proposed
by Douglas and Jones?’ which is a modifi-
cation of the CNS. Blottner also states
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that the predictor-corrector form of the
CNS with the continuity and momentum
equations handled in an uncoupled man-
ner is not appropriate for solving the
boundary layer equations if second-order
accuracy is desired. However it seems that
the predictor-corrector form of the Crank-
Nicolson Scheme (PC-CNS) is a form of
the simplest and most efficient schemes
since it is non-iterative. It is desirable to
devise a second-order accurate procedure
based on this PC-CNS.

The purpose of this paper is to present
a second-order accurate scheme based on
the PC-CNS for solving both the incom-
pressible and compressible boundary layer
equations. The present scheme is a
coupled one in which the coupling of the
boundary layer continuity and momen-
tum equations is made by introducing a
stream function together with the ap-
propriate transformation.

In section 2 is given a general descrip-
tion of the PC-CNS for a scalar parabolic
equation. In section 3 is given an example
that the PC-CNS degenerates to a first-
order accurate scheme when the boundary
layer continuity and momentum equa-
tions are handled in an uncoupled manner.
The second-order
based on the PC-CNS are given for incom-

accurate procedure

pressible flows in section 4 and for com-
pressible flows in section 5. The accuracy
of the present scheme is tested for the
linearly retarded edge velocity flow, of
which the results are given in both sec-
tions 4 and 5.

2. General description of the predictor-
corrector forms of the Crank-
Nicolson Scheme (PC-CNS).

For a scalar parabolic equation:

d’u _ du  du
ayz _F(x’ Yy, u, ayv ax)’
0<y<1,0<x (1)

u (0,y), u(x,0), u(x, 1) specified,
0<y<1, 0<x,

the standard Crank-Nicolson finite differ-
ence equation is

1
D) (Aium.i +Alu ) )=F (Xir1)25 Yj»

1 1
—Q‘(um,j +u;l, 7(5yu.~+1,j +o,uj),

Uirr 5 — Ui
it — Tl ), 2)

where

X; = iAxa yj =jAys ui,)' =u (xl'v yf)’
0 < Ax, Ay
AJug; = (Uier = 2u; + ug; 1 )/0y?

Syt = (U1 - U 5.1)/(28Y). (3)
Provided the Eq. (1) is nonlinear, the
algebraic equation (2) is also nonlinear.

The predictor-corrector forms of the
CNS proposed by Douglas and Jones?’ are
modifications of the CNS and written as
follows:
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Predictor

% _
Ai Uirr/2,; = F (xi+1/29 ¥ir Ui g U j,
sk
U125 Uij 4
2irps i, )

Corrector

1
E(Aiuiﬂ.i + 83U ) = F (i1 2, i,

Uir1/2,} ayui+1/2,j9 —-ﬁxx—l’}) (5)
or

1
E(Aguiﬂ.i + Ag’ui,j) =F (Xiv1/2, Yj»

* 1
Ui+142,j» _2(5y Uipp,;j T 5y”i.i)’

Uir1,j =

Ui i
g Hity, (6)

Clearly, the predictor-corrector forms of
the Crank-Nicolson equations [(4), (5)]
or [(4), (6)] combined with initial and
boundary data

uOJ =u (O’ yj )’ ui,O =u (xia 0)9
u;y = u (x;,1) (7)

lead to linear algebraic equations if either
F is linear in du/dx or F is linear in both
ou/ox and ou/dy. In both cases the un-
conditional stability of the CNS is
retained.

3. First-order accurate formulation
of the PC-CNS.

In this section, it will be demonstrated

that the PC-CNS is first-order accurate in
x-direction if the boundary layer con-
tinuity and momentum equations are
handled in an uncoupled manner. For this
purpose only the incompressible flow is
considered.

The steady, incompressible, laminar
boundary layer equations for two-dimen-
sional flows are:

Continuity

ou , v _
ax ey 0 (8)

Momentum

ou ou du 3%u
__+ —— = (4 + —_—
Uax T Y 3y Ueldx TV ayT - )

The boundary conditions for the above
equations are as follows:

y=0:u=v=0,y=6  :u=u,. (10)
Following Blottner!’, the Levy-Lees

transformation is introduced. The new
independent variables are

£(x) =K (0 rer [oUodx,
$(x,y) = pue Vk/[28 . (11)

The boundary layer equations become the
followings in the transformed plane:

Continuity

2F, + Ve + F =0, (12)
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Momentum
2EFF£+VF§-+B(F2 -1)=F§§-, (13)
where

B = 2¢/u, (du./dE), F=u/u,,

V=28(F¢, + pUNVK/2E) [ {k (Pt)rerlte }
(14)

The boundary conditions become
{=0:F=V=0,{=¢(, :F=1, (15)
Applying Egs. (4) and (6), to Egs. (12)
and (13), then the resultant finite differ-

ence equations may be written as:

Predictor
(Momentum)

A Ff 12 - Vijs¢F; +B(1 -F}})
Fﬁuz,; “Fi,l

= 2§i+1/2Fi,j AE/D ’ (16)
(Continuity)
1 Flip,-Fiy

2Ei+1127( A£/2
Fiapg1 - Fija
AEJD

* %
+ Yirazg - Vinagzia
AT

1
""2“(Fit1/2,1 +F:#1/2,j-1)=0 (17)

Corrector
(Momentum)

1
5 (A} Fiq,j + B F; )

1
- :1/2,1"2_(6{Fi+1,j +8.F; ;)

+8(1-FXip;)

Fiy;,-F

(Continity)

1 Fuq;-F;; Fisi51 -Fi ;.
28125 ( HAJS L+ :+1,;A1£ 1)
1 Vi Viaga Vii-Vijia
+ 5 ( AT + AT )

1
+'4—( Fioj+Furja1+F j+F ;4,)=0,

(19)

At the predictor step, the Fli;,; ;’s are
determined using Eq. (16). Then Eq. (17)
is used to solve for V3,5 ;. The similar
procedure is used at the corrector step.
These uncoupled formulas have the tran-
cation error of O(A£?) + O(A¢?), which is
derived by expanding F and V in Taylar
series and substituting them into Eqgs. (18)
and (19), noting Fi\y5; = Fij + (A£/2)
(Felig + OLE?) and Vi, = Vi +
(AE/2) (Vi) + O(AE?).

The numerical test, however, shows
that the uncoupled formulas, Egs. (16) to
(19), have the first-order behavior in the
¢-direction. The Howarth flow is used as
the test problem. This flow has a linearly
retarded velocity field:

u, /U, =1 -x/L, (L =8 (reference length)).
(20)

The result is shown in Fig. 1, where the
error of the velocity gradient at the wall
is shown as a function of the step size A¢
for A{ = 0.2. The assumed ‘“‘exact solu-
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Fig.1 Accuracy of uncoupled PC-CNS
for Howarth problem

tion’” which is used to evaluate the abso-
lute % error is obtained by the Richardson
extraporation:

Figso =F'(308) +3 (F (345)
-F'(Af) ), (21)

where F' = (0F/3¢),.u. The velocity
gradient is determined from the following
second-order expression:

(OF/38)wan = { - (3/2)F, + 2F,
- (1/2)F; } /At (1: wall), (22)

where a uniform grid is assumed. As can
be seen in Fig. 1, for the smaller step sizes
the slope is approaching a value of unity
which it should have as a first-order
scheme.
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4. Formulation of a second-order
accurate coupled PC-CNS for
the incompressible flows.

In this section, the second-order ac-
curate PC-CNS for the incompressible
flows will be presented. The boundary
layer continuity and momentum equations
are handled in a coupled manner. We
introduce the transformation due to
Cebeci®’, because this transformation
eliminates the continuity equation
through a stream function and results in
the straightforward coupling of these
equations.

Defining the stream function by

Us—, U0=-"—— (23)

and introducing the following transforma-
tion

x=x1=(u/vx)’y (24)

together with the dimensionless stream
function £ (x, n) defined by

¥ = (u,vx)'"? f(x, n), (25)

then the boundary layer equations, (8)
and (9), become

F=f,, (26)

Fop +PyfF, + P,y (1-F?)
= x(FF, - F,f.), (27)

This document is provided by JAXA.



A Second-Order Accurate Procedure Based on the Predictor-Corrector Form of the Crank-Nicolson Scheme

where

F=ufu,,Py =(1+P)2,
P, = (x/u.) (du./dx). (28)

Here F is introduced to reduce the order
of the equation from three to two. The
boundary conditions are

n=0:f=F=0,n=1n,:F=1. (29)

Applying Eqgs. (4) and (5) to Egs. (26)
and (27), we have

Predictor

1 % *
5 (Fis1y2,; + Fiv1y2,5-1)

flrajei -z
A7 , (30)
A Ffi1p2+ Pifij6nFiy+ Py (1-F}))

Flip,- Fy;
Ax]2

= Xir1)2 (Fi,j

_§.F.;. ﬁf»l/2.j 'fi,i ) (31)
ntLITTTAx[2

Corrector

1 = fie1in
5 (Fir,j * Fie150) = f“l’JAn BLEL

(32)

1
5 (A2 Fy; + OLF, )

* 3 *2
+Pyfii1y2,8nFin12y + P2 (1 -Filipe,))

= * Fi1,j-Fi
=Xi+1/2 (Fis172.5 '—’A;C—i—

fi+].j _fi,f ) (33)

*
- BﬂFi+1/2,j Ax

7

Here, P, and P, are evaluated at x;,;,2 =
x; + (1/2)Ax. The above mentioned finite
difference equations are linear with
respect to the unknowns (£} 1,2.;, Fi+1/2.)
and (fi+1,5, Fir1,;). Moreover the tranca-
tion error remains to be second-order:
O (Ax?) + O(An?).

The numerical test is also made by use
of the Howarth problem as discussed in
the previous section to evaluate the ac-
curacy of the present scheme. The results
for (0F/9n), .y at each x-step are given in
Fig. 2. The curves have a slope of approxi-
mately 2 which shows that the scheme is
second-order accurate in the x-direction.
The effect of An on the accuracy of the
wall velocity gradient is shown in Fig. 3.

10 .
3 1r )
<
B
$
<)
<
S
1071 .
=
o
&
=~
=
®
£ An=02
5 a2l n= i
2 10
o) = 0.
c‘g x =02
< A 0.4
v 0.6
D 0.8
1073 .
1072 10~} 1
Ax

Fig. 2 Accuracy of coupled PC-CNS with
various Ax for Howarth problem
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Fig. 3 Accuracy of coupled PC-CNS with
various An for Howarth problem

The results show that the scheme is
second-order accurate in the n-direction
too.

The present second-order scheme is a
coupled one. Thus we call the scheme the
coupled type Predictor-Corrector Crank-
Nicolson Scheme (the coupled PC-CNS).

5. An extension of the coupled PC-CNS
to the compressible flow case.

In this section, the scheme presented in
the previous section is extended to the
compressible boundary layers. The steady,
laminar, compressible boundary layer
equations for two-dimensional flows of a
perfect gas are:

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-655T

Continuity

o (o) +5=(0v) = 0, (34)

Momentum

(35)

oH 0H _d_ u oH
P, dy

PUSx *pu ay oy
1.0 u
+u(l-2)55 ) ) (36)
Equation of state
P =pRT. (37)

The above equations are completed with
the following relations and assumptions:

H=c¢,T+u?/2,¢c, = const.,

P, = ucp/k =const., u = u(T). (38)
Boundary conditions are
y=0:u=v=0,H=H,,,
y=6:u=u,, H=H,. (39)

We define the stream function such
that

=3y . ¥
p s P -ax,

3y (40)

then the continuity equation is satisfied.
Introducing the transformation

This document is provided by JAXA.
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1/2
X =x’ n = (uelyex) / foyp/pedy,

¥ = (ou x) % p fx, n), (41)
the boundary layer equations become
Momentum

F=1f,, (42)

CFop + CoFp + myfF, + my (c - F?)

=x(FFx—anx)> (43)
Energy
01Eqy 01, qEn +02E, + 03,
= 2 (FE, - E,f.), (44)
where

F=u/u,, E=H/H,, c=p./p,

C=pu/pehe (45)
and

m, = { 1 +m2 + (x/peue) (d(peue)/dx)}/z’

m, = (x/ue) (due/dx)’ 0y = C/Pr,
0, =myf, 03 =C(uz/H.)(1 - I/Pr)FFn~

(46)
Boundary conditions become
n =0:f=F=O’E=Ewall9
n=n.:F=1E=1, (47)

The coupled PC-CNS is now extended
to the compressible boundary layer equa-
tions (42) to (44) with the energy equa-
tion handled in an uncoupled manner.

Predictor

1
_2“(Fit1/2,j + F§1/2,i-1 )

* *
_ Fivyz,i~fvaz.ia
An ’

2 0k
Ci,jbnFirz,;j +8,C 8 F;

+myfi 8, F; j+ my (¢ ; - F?))

Fitl/z,j -F;
Ax/2

=Xiv1/2 (Fi,j

s B Tz ~fisy
B =)
2 k3
01,105 Efy2,j + 80011,i0nEi;
+09,,i00Eij +8,03,;

*
B2, - Eij

= xi+lf2(Fi,j Ax/2

*
N fi+l£2;‘/‘ fi,i ),

Corrector

1
‘2—(Fi+1,j + Fi+1,j-1)

_ furj-Tirr.in
An ’

1
C:1/2,j§‘(A31Fi+l,j + A% F; )

* *
+8,Ci1y2,80Fiv1y2.5
% *
+myfia2,i8nFis2,i
* %2
+my (Ciyyz,j - Fisie.i)

F -F
- * i+1, i,j
= X412 (F:+ 1/2,j #—

o Fhup L2 Tu),

1
01+ 1[2,1—2—(A37Ei+1,j +AZE; )

* *
+8,07 1412, nEi+ 12,5
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* * %
+ 05412, nEiv1/2,i Y 6203.i41/2,j

E....-E. .
T Xir1/2 (Fi*u/z,j —'tlA}x——”—
S ALY A (1R (53)

Here the coefficients m, and m, are
evaluated at the midpoint x4/, = x; +
(1/2)Ax. This system of equations is also

linear and easily solved.

The numerical accuracy of the scheme
is also tested. The linearly retarded edge
velocity problem is solved for the case
with M, =4 and T,,; = T. . For this
flow the edge velocity varies as

u,/U_ =1-x/L, (54)
and additional edge properties and para-

meters are obtained from isentropic rela-
tions

Te/To, =1+ (y-1)MZ/2(1 - (u./U, )],

pelon. =(T T )"V, (55)

uiu,, = T/T, for linear viscosity low.

In this case we put P, =1, L =1,y=14
and n, = 5. The accuracy of the wall
velocity gradient at x = 0.06 and 0.1 for
various Ax with An = 0.2 is given in Fig. 4.
The curves have a slope of approximately
2 which shows that the present scheme is
second-order accurate. The results of the
present scheme are compared with the
numerical solution based on the Davis
Coupled Scheme which is given by
Blottner!’ in Fig. 4. The Davis Coupled
Scheme is the Crank-Nicolson scheme

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-655T
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O A Coupled PC-CNS
Davis Coupled Scheme
3 (1 Iteration)
<
3
S 1r 1
i
Ry
<
=
o
oo
S
= 10
5]
R
=
o)
(o]
2
! 1072} -
An=0.2
O x=0.1
A 0.06
1073 '
1073 1072 107!
Ax

Fig. 4 Accuracy of Schemes with various
Ax for linearly retarded flow at
Moo = 4and Twan =T°°

with the continuity and momentum equa-
tions handled in a coupled manner, and
was proposed by Davis. The coordinate
transformation employed by Blottner is
the same as in section 3, and does not
agree with one employed in the present
scheme. The difference between them,
however, is not essential. For the present
problem the error of the present scheme is
nearly the same as that of the Davis
Coupled Scheme.

The computation time is very small
because the present scheme is non-itera-
tive. The solution with 161 x 26 grid
points required 0.96 seconds of central
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processing time on the FACOM 230-75
computer — this gives 0.00023 sec./grid
point for the computation time. On the
other hand, the Davis Coupled Scheme
required 0.00082 sec./grid point of
central processing time on the CDC 6600
computer (370 x 88 grid points, total
26.8 seconds of CP time, Ref. 1). It is
known that the FACOM 230-75 CP Unit
provides nearly the same floating point
computation rate as the CDC 6600 CP
Unit. Hence it seems that the present
scheme is more efficient than the Davis
Coupled Scheme which is one of the most
efficient finite difference schemes present-
ly existing.

Concluding remarks

In this paper, it has been shown for the
Howarth flow that the predictor-corrector
method of Douglas and Jones is first-
order accurate unless the continuity and
momentum equations are handled in a
coupled manner, thus giving support to
Blottner’s observation.

The second-order accurate scheme
based on a predictor-corrector forms of
the CNS has been presented for both
the incompressible flows and compressible
flows, where the coupling of the con-
tinuity and momentum equations is made
by introducing the
together with the appropriate coordinate

stream function

transformation. The present scheme, the
coupled PC-CNS, has been shown to be
second-order accurate for the linearly
retarded edge velocity flows and seems to
be more efficient than the Davis Coupled
Scheme.

TR VDRI E
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Notation

Cp : specific heat at constant
pressure

: total enthalpy

: thermal conductivity

: freestream Mach number

: Prandtl number

: pressure

: gas constant

;. temperature

: freestream velocity

: velocity components tangential
and normal to body surface

: coordinates along and normal
to body surface

) : boundary layer thickness

Y : ratio of specific heats

: arbitrary constant (see Eq.
(11))

u : viscosity

v : kinematic viscosity

o : density

Ax, Ay, A¢, Ag, An : mesh width

A2, Af, O :finite difference operators

8

RS
<

R
<

(see Eq. (3))
5y, 8¢, 8 :finite difference operators
(see Eq. (3))
( ) : outer edge of the boundary
layer
(i : value at the grid point (x;, ;)
[resp. (&5, §;)]
where x; =iAx and n; =jAn
[resp. &; =iAgand §; =jAC].
)iv1/2; : value at the predictor step
)ref : reference condition
)eo : freestream condition
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