Second Workshop on Integration of EFD and CFD 24th Feb 2009, JAXA

Static Aeroelasticity Analyisis of AGARD-B Wind Tunnel Calibration Model Using Discontinuous Galerkin CFD Solver

Kanako YASUE* and Keisuke SAWADA

* Ph.D Student, Graduate School of Engineering, Dept. of Aerospace Engineering, Tohoku University, JAPAN

Prediction of Aerodynamic Characteristic

- Accurate prediction of aerodynamic characteristics
 - Affected by boundary layer transition and separation
 - Required wind tunnel test with actual flight Re number
- **★** Conventional wind tunnel test
 - 1 or 2 order lower Re number compared with actual flight due to model size restriction or facility restriction
 - Putting roughness to promote turbulent transition at lower
 Re number
 - Extrapolation of the aerodynamic performance in actual flight from wind tunnel data (Re number scaling effect)

High Re Number Wind Tunnels

- **★** National Transonic Facility (US, 1982)
- European Transonic Wind-tunnel (Germany, 1993)

- High Re number comparable to that of actual flight

environment

 Lowering temperature of pressurized airflow to that of cryogenic level

ETW performance envelope

Features of High Re Number Wind Tunnel

- Highly pressurized airflow
- * Larger aerodynamic load on the model
- **★** Model deformation of thin part
- Altering aerodynamic features
- **★** Masking Re number scaling effect

In NTF and ETW

- **★** Independent control of total pressure and total temperature
- **★** Separate evaluation of Re number effect and model deformation effect

High Re Number Wind Tunnel in Japan

- **★** Trisonic Wind Tunnel (Japan, 2005)
 - Highly pressurized airflow (P_{0max}=1.4 MPa, Re_{max}=1x10⁸ /m)
 - Cannot control total pressure and total temperature independently
 - Cannot isolate Re number scaling effect and model deformation effect

Accurate prediction of aerodynamic performance in TWT

- **★** Isolation of model deformation effect using CFD
- Small change in geometry of wind tunnel model causes small change in aerodynamic performance
 - ⇒ High-order CFD schemes

)5

Objectives

- **★** Explore effect of model deformation in TWT by fluid-structure interaction analysis
 - Static aeroelasticity analysis of AGARD-B wind tunnel calibration model
 - CFD analysis: Discontinuous Galerkin (DG) method
 - ⇒High order spatial accuracy on unstructured mesh
 - Structural analysis: NX/NASTRAN®
 - Examination of model deformation and its influence to aerodynamic characteristics

Discontinuous Galerkin Method

$$\iiint_{\Omega} w(\mathbf{x}) \left(\frac{\partial Q}{\partial t} + \nabla \cdot \mathbf{F}(Q) \right) d\Omega = 0$$

$$Q(\mathbf{x},t) = \sum_j Q_j(t) v_j(\mathbf{x}) \qquad w(\mathbf{x}) \text{ : test function} \\ Q_j(t) \text{ : degree-of-freedom (DOF)}$$

$$\mathcal{Z}(\mathbf{A},t) = \sum_{j} \mathcal{Q}_{j}(t) \mathcal{O}_{j}(\mathbf{A})$$

$$w(\mathbf{x}) \leftarrow v_i(\mathbf{x})$$

 $v_i(\mathbf{x})$: basis function

(Jacobi polynomial)

$$\sum_{i} \frac{dQ_{j}}{dt} \iiint_{\Omega} v_{i}v_{j}d\Omega + \iint_{\partial\Omega} v_{i}\mathbf{F}(Q) \cdot \mathbf{n}d\sigma - \iiint_{\Omega} \mathbf{F}(Q) \cdot \nabla v_{i}d\Omega = 0$$

- * Basis functions and dependent variables become discontinuous at cell interface
- Numerical flux is given by approximate Riemann solver
- **★** Viscous term is discretized using BR2 formulation

Pointwise Relaxation Implicit Scheme

Flux function is solely expanded by the change of DOFs in own computational cell

$$\mathbf{F}^{n+1} \cong \mathbf{F}^n + \frac{\partial \mathbf{F}^n}{\partial Q} \Delta Q$$
$$= \mathbf{F}^n + \frac{\partial \mathbf{F}^n}{\partial Q} \sum_j v_j \Delta Q_j$$

* Resulting algebraic equation is pointwise

$$\sum_{j} \frac{dQ_{j}}{dt} \int_{\Omega} v_{i}v_{j}d\Omega + \int_{\partial\Omega} v_{i}\mathbf{F}^{n+1}(Q_{h}) \cdot \mathbf{n}d\sigma - \int_{\Omega} \mathbf{F}^{n+1}(Q_{h}) \cdot \nabla v_{i}d\Omega = 0$$

$$\mathcal{M}^{n} \Delta Q_{i} = \mathcal{R}^{n}$$

size of $\mathcal{M}^n = [(\# \text{ of Dependent variables}) \times (\# \text{ of DOFs})]^2$

$$\mathcal{M}^{n} = \frac{1}{\Delta t} \sum_{j} \int_{\Omega} v_{i} v_{j} d\Omega$$

$$+ \sum_{j} \int_{\partial \Omega} v_{i} \left(\frac{\partial \mathbf{F}^{n}}{\partial Q} \cdot \mathbf{n} \right)^{+} v_{j} d\sigma - \sum_{j} \int_{\Omega} v_{i} \left(\frac{\partial \mathbf{F}^{n}}{\partial Q} \nabla v_{i} \right) v_{j} d\Omega$$

$$\mathcal{R}^{n} = - \int_{\partial \Omega} v_{i} \mathbf{F}^{n}(Q_{h}) \cdot \mathbf{n} d\sigma + \int_{\Omega} \mathbf{F}^{n}(Q_{h}) \cdot \nabla v_{i} d\Omega$$

Aeroelasticity Analysis Procedure

Supersonic Flowfield over AGARD-B Model

Numerical Schemes

- * RANS equations
- * 2nd order DG method
- Pointwise relaxation implicit scheme
- **★** AUSM-DV upwind scheme
- **★** BR2 formulation
- **★** Spalart-Allmaras turbulence model
- **★** Slope limiter
- **★** CFL=10⁵

Parallelization

- ★ METIS grid partitioning
- **★** MPI Library
- ★ Xeon Dual Core 3.0GHz x2 (4cores)

Flow Conditions (TWT)

	Mach number	Angle of Attack [deg]	Side Slip Angle [deg]	Re number x10 ⁶ [1/m]	Total Pressure [kPa]	Total Temperature [K]
Case1	1.4	0.098	-0.005	27.6	167.1	276.4
Case2	1.4	4.303	-0.003	27.8	167.0	274.5
Case3	1.4	8.535	-0.001	27.9	167.1	273.9

11

Pressure and Mach Number Contours

Baseline Computations

Case1 (α =0.09)

Case2 (α =4.30)

Case3 ($\alpha = 8.53$)

Convergence Histories

Baseline Computations

- **★** L₂ residual and C_L are converged within 3000 iterations
- **★** L₂ residual decreases only for 2 orders of magnitude

Aerodynamic Coefficients

Baseline Computations

Using finer mesh and considering effect of turbulence transition at trip location will be needed

Aeroelasticity Analysis of AGARD-B Model

Structural computation by NX Nastran

- **★** SUS304
- Same surface mesh with CFD
- ★ Nodal load data converted from steady state CFD solution at surface boundary
- Fixed condition at root plane boundary

Flowfield computation

- * RANS equations
- 2nd order DG method
- ★ Pointwise relaxation implicit scheme
- **★** AUSM-DV upwind scheme
- **★** BR2 formuration
- **★** Spalart-Allmaras turbulence model
- **★** Slope limiter
- **★** CFL=10⁵

15

Obtained Model Deformation

- * Model deformation analysis is only considered for Case3 (α =8.5)
- **★** Maximum wing tip displacement is 0.737 mm

Converged Deformation along Trailing Edge

* Convergence is obtained only within 3 iterations in this case

Aerodynamic Characteristics

- **★** C_L decreases 0.0047 due to model deformation
- **★** C_D decreases 0.0018 due to model deformation
- **★** Even for small displacement, resulting change in aerodynamic coefficient cannot be ignored

Concluding Remarks

- ★ The aeroelasticity analysis of AGARD-B wind tunnel calibration model is successfully carried out
 - Pointwise relaxation implicit discontinuous Galerkin method for flowfield computation is coupled with NX/NASTRAN for structural analysis
 - Maximum deformation of wing tip is less than 1mm
 - ΔC_L and ΔC_D due to model deformation cannot be ignored
 - DG solver is suitable for static aeroelasticity analysis
- Effect of model deformation should be isolated in experimental data of TWT for higher Re number conditions

Future Works

- ★ Computation using finer mesh and considering turbulent transition at the trip location
- Higher order approximation and boundary representation for flowfield computation
- Considering internal structure for elasticity analysis
- **★** Constructing techniques to isolate Re number effect and model deformation effect in TWT