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Prediction of Aerodynamic Characteri

* Accurate prediction of aerodynamic characteristics
— Affected by boundary layer transition and separation
— Required wind tunnel test with actual flight Re number

¥ Conventional wind tunnel test

— 1 or 2 order lower Re number compared with actual flight
due to model size restriction or facility restriction

— Putting roughness to promote turbulent transition at lower
Re number

— Extrapolation of the aerodynamic performance in actual
flight from wind tunnel data (Re number scaling effect)

This document is provided by JAXA.
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High Re Number Wind Tunnels

* National Transonic Facility (US, 1982)
* European Transonic Wind-tunnel (Germany, 1993)
— High Re number comparable to that of actual flight

environment

— Lowering temperature of
pressurized airflow to that of
cryogenic level
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Features of High Re Number Wind Tun

* Highly pressurized airflow

* Larger aerodynamic load on the model

* Model deformation of thin part
* Altering aerodynamic features
* Masking Re number scaling effect

In NTF and ETW

* Independent control of total
pressure and total temperature

* Separate evaluation of Re number

effect and model deformation effect

This document is provided by JAXA.
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High Re Number Wind Tunnel in Japa

* Trisonic Wind Tunnel (Japan, 2005)

— Highly pressurized airflow
(POmax=1.4 MPa, Remax=1 X108 /m)

— Cannot control total pressure and
total temperature independently

— Cannot isolate Re number scaling
effect and model deformation effect

Accurate prediction of aerodynamic performance in TWT

* Isolation of model deformation effect using CFD

* Small change in geometry of wind tunnel model causes
small change in aerodynamic performance

= High-order CFD schemes

Objectives

* Explore effect of model deformation in TWT by fluid-structure
interaction analysis

— Static aeroelasticity analysis of AGARD-B wind tunnel
calibration model

e CFD analysis : Discontinuous Galerkin (DG) method
= High order spatial accuracy on unstructured mesh
e Structural analysis : NX/NASTRAN®

— Examination of model deformation and its influence to
aerodynamic characteristics

This document is provided by JAXA.
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Discontinuous Galerkin Method
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X, 1) = Z Q;(8)w; (%) w(x) : test function
' Q;(t): degree-of-freedom (DOF)
w(x) « v;(x) v;(x): basis function
(Jacobi polynomial)

ng /// UZWQ+//@\Q% Q).ndg_///QF(Q)-deQ:0

*x Basis functions and dependent variables become discontinuous
at cell interface

* Numerical flux is given by approximate Riemann solver
* Viscous term is discretized using BR2 formulation

Pointwise Relaxation Implicit Scheme

* Flux function is solely expanded

by the change of DOFs in own e %PC; AQ
computational cell )2

* Resulting algebraic equation is =F+ 0Q ZUJAQJ
pointwise ’
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Aeroelasticity Analysis Procedure

:" Model

* Surface Mesh :
. [Gridgen®]

CFD Spatlal Mesh
C [Gridgen®] )(—( Surface Mesh )(—(

CFD Analysis

[DG solver]

Shape

187

Nodal
Displacement

FEM Analysis
[NX/NASTRAN®]

Surface Pressure
C Distribution )_)( Nodal Loads

Supersonic Flowfield over AGARD-B

Numerical Schemes

* RANS equations

* 2nd order DG method

* Pointwise relaxation implicit scheme
* AUSM-DV upwind scheme

* BR2 formulation T
i 356,201 cells (1.4 million DOFs)
e Spalart. A!Imaras turbulence model AR AL bl i,
* Slope Ilmlter | 19485 AGARD-B model configuration
* CFL=10°
. . 60deg - -

Parallelization g 2
* METIS grid = o = |8 |R

partitioning
*x MPI Library 62.5 10515
* Xeon Dual Core I 2508 i

3.0GHz x2 (4cores) ) 6375 T 53734 ’ unit=mm

This document is provided by JAXA.
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Flow Conditions (TWT)

Angle of  Side Slip Re number Total Total
Mach 3
number Attack Angle x10 Pressure Temperature
[ded] [ded] [1/m] [kPa] [K]
Casel 14 0.098 -0.005 27.6 167.1 2764
Case2 14 4.303 -0.003 27.8 167.0 274.5
Case3 14 8.535 -0.001 279 167.1 2739

This document is provided by JAXA.
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Convergence Histories

Baseline Computations
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* L, residual and C; are converged within 3000 iterations
* L, residual decreases only for 2 orders of magnitude

Aerodynamic Coefficients

Baseline Computations
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* Using finer mesh and considering effect of turbulence
transition at trip location will be needed

14
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Aeroelasticity Analysis of AGARD-B

Structural computation by NX Nastran
* SUS304
* Same surface mesh with CFD

* Nodal load data converted from steady
state CFD solution at surface boundary

* Fixed condition at root plane boundary

A
Yo" “Adapter
Flowfield computation ”

* RANS equations AFL(E)Z\(/)‘Or(T)]%%Gc_\iIes

* 2nd order DG method quadratic element
* Pointwise relaxation implicit scheme
* AUSM-DV upwind scheme

* BR2 formuration

* Spalart-Allmaras turbulence model
* Slope limiter

* CFL=10°

* Model deformation analysis is only considered for Case3 (x=8.5)
* Maximum wing tip displacement is 0.737 mm

This document is provided by JAXA.
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Converged Deformation along Traili
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* Convergence is obtained only within 3 iterations in this case
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* C, decreases 0.0047 due to model deformation
¥ Cpdecreases 0.0018 due to model deformation

* Even for small displacement, resulting change in aerodynamic
coefficient cannot be ignored

This document is provided by JAXA.
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Concluding Remarks

* The aeroelasticity analysis of AGARD-B wind tunnel calibration
model is successfully carried out

— Pointwise relaxation implicit discontinuous Galerkin
method for flowfield computation is coupled with
NX/NASTRAN for structural analysis

— Maximum deformation of wing tip is less than Tmm
— AC. and ACp due to model deformation cannot be ignored
— DG solver is suitable for static aeroelasticity analysis

* Effect of model deformation should be isolated in
experimental data of TWT for higher Re number conditions

Future Works

* Computation using finer mesh and considering turbulent
transition at the trip location

* Higher order approximation and boundary representation for
flowfield computation

* Considering internal structure for elasticity analysis

* Constructing techniques to isolate Re number effect and model
deformation effect in TWT

This document is provided by JAXA.





