「はやぶさ2」ハードウェアシミュレータに係る レイトレーシングソフトウェアの開発

三浦昭,武井悠人,山口智宏, 高橋忠輝,佐伯孝尚 宇宙航空研究開発機構

楽観できない「はやぶさ2」ミッション

3. 小惑星到着に備えて

小惑星リュウグウに探査機が接近することは初めてであり、さらに事前に把握できている情報が少ない。
 ※「はやぶさ」のときは、事前にレーダーによってイトカワが観測されていた=形状や自転軸について信頼できる情報があった
 「はやぶさ」では、2回のタッチダウンをしたが、2回とも予定通りにはできなかった。

「はやぶさ」の経験があるとは言え、全く楽観はできない

小惑星到着に備えて検討を進めている

※「はやぶさ」では、「こんなこともあろうかと・・・」

はやぶさ2プロジェクト "2018年の小惑星リュウグウ到着にむけて 小惑星探査機「はやぶさ2」の近況", 2017年12月14日 記者説明会資料

10

ハードウェアシミュレータ(HIL)

Hardware-in-the-Loop Simulator (HIL) - Toward Real-time Integrated Operation (RIO) Training

Real-time Manual Shape/GCP Matching for GCP-NAV Descent

Critical Operations under Large Communication Delay

Consistency among Ground Operator Behavior, Operation Procedure, Ground Tools, and Spacecraft Behavior A Hardware-in-the-Loop Simulator (HIL) capable of realistic asteroid image generation

<u>Purpose</u>

- RIO Training Campaign (4Q 2017 1Q 2018)
- Trouble shooting
- Operation procedure validation

<u>Advantage 😊</u>

- Minimum cost by reusing GM/EM/PFM
- Electrically equivalent to Flight Model
- Flight software installable

Drawbacks 😕

- Cannot reverse/speed-up simulation
- Not all components simulated

10

Yuto Takei et al., "A Hardware-in-the-Loop Simulator for Deep Space Touchdown Operation Training of Hayabusa2", 68th International Astronautical Congress, Adelaide, Australia, Sep.2017

着陸地点選定訓練

模擬画像生成の必要性

- ・事例
 - リアルタイムの運用訓練
 - 着陸地点選定訓練
 - etc.
- ・画像生成装置に求められる機能・性能
 - リアルタイム性
 - 高精細, 高精度
 - ・小惑星全体を、10cm程度の精度で模擬する
 - ・ONC-W相当: 高度100m程度の分解能
 - 様々な光学機器の模擬
 - ・ONC-W1, ONC-W2, LIDAR, 理学用カメラ等
 - ・歪み
 - etc.

画像生成装置(HILIGS)の概要

Hardware-in-the-Loop (HIL) Simulator

- Design of Asteroid Image Generator

Specification

- Lay-tracing method for CG generation
- 5 million polygons for Degraded Asteroid Model
- 0.4 billion polygons for Precise Asteroid Model
- Geological information considered in Precise Model

Design Compromise

• "Input data transfer" is asynchronous to "Output data calculation" (due to budget limitation)

Yuto Takei et al., "A Hardware-in-the-Loop Simulator for Deep Space Touchdown Operation Training of Hayabusa2", 68th International Astronautical Congress, Adelaide, Australia, Sep.2017

11

画像生成装置への入力

・JSON形式

-{"名前":值,"名前":值,...}

- ・主要なパラメータ
 - 探査機
 - ·位置(小惑星相対),姿勢
 - カメラ
 - ・モード,露光時間
 - 小惑星
 - ·位置(太陽相対,地球相対),自転情報
 - 時刻
 - etc.

画像生成装置からの出力

- ・小惑星CG(簡易版)
 - 小惑星形状モデル(簡易版): 100万ポリゴン~
 - 画素値計算: Hapkeモデル(簡易版)
 - 高速レンダリング
 - 応答速度の目安(例): 0.1s
- ・小惑星CG(詳細版)
 - 小惑星形状モデル(詳細版): ~4億ポリゴン
 - 画素値計算: 理学データ, 理学ライブラリとのインタフェース
 - 高精細レンダリング
 - ・オーバーサンプリング
- ・LIDAR(測距)情報
- ・いずれも、レイトレーシングのアルゴリズムを採用

レイトレーシングのメリット・デメリット

- ・メリット
 - 影の描写に長けている
 - ・小惑星の地形同士の影
 - ・探査機の影
 - 歪みの付加が容易
 - ・ 歪み除去関数を用いて、直接歪んだ画像を生成できる
- ・デメリット
 - 遅い
 - ・ 画素ごとにレイ(視線)を追跡
 - ・オブジェクト毎に総当たりで衝突判定

模擬画像生成の必要性

- ・事例
 - リアルタイムの運用訓練 - 着陸地点選定訓練

-etc.

・ 画像生成装置に求められる機能・性能 ーリアルタイム性

- 高精細, 高精度

・小惑星全体を、10cm程度の精度で模擬する

- ・ONC-W相当: 高度100m程度の分解能
- 様々な光学機器の模擬
 - ・ONC-W1, ONC-W2, LIDAR, 理学用カメラ等
 - ・ 歪み
- -etc.

レイトレーシングの高速化

- ・Voxel分割
 - 分割の階層化
 - ・e.g., 100万ポリゴン: 10階層程度
 - オブジェクト空間での事前分割
 - ・レンダリング時のVoxel分割が不要
 - キャッシュファイル
 - ・Voxel分割の処理時間短縮
- ・並列処理(OpenMP)
 (画像生成装置の場合)20コア
- ・クライアント・サーバ方式

- データ読み込み時間の省略

Voxel分割

- ・レイの追跡に先立って
 - オブジェクト(シーン)を包含するvoxelを作成
 - Voxelを細分化しつつ, そこに含まれるオブジェクトを探索
 - オブジェクトが含まれないvoxelは作成しない
 - 簡単のため, voxelを四角形で例示

Voxel分割

- ・レイの追跡
 - それぞれのレイにヒットしたvoxelのみ追跡
 - 階層的に追跡
- ・ プリミティブ数(n)が多いと,効果的
 実行時間は、概ねO(log n)

Voxel分割: 分割方法

- ・シーン毎に分割
 - 一般のCGソフト
 - レンダリングの度にVoxel分割を実施
 - レイを追跡するVoxel群は、シーン毎に1つ
- オブジェクト毎に分割
 分割作業はオブジェクトの読込時のみ
 レイを追跡するVoxel群はオブジェクト数に比例
- ・ 画像生成装置における手法: オブジェクト毎に分割
 - 画像生成装置のオブジェクトは, 原則として2つ(少ない)
 - ・小惑星
 - ・探査機
 - -→Voxel分割のコストより,複数回の追跡を選択

クライアント・サーバ

・バックグラウンドプログラム

- 常駐

- レンダリングに必要なデータを常備
 - ・形状データ
 - ・Voxel分割
- TCP/IPでコマンド(引数)を受け取ってレンダリング

バックグラウンドプログラム(サーバ)

- ・起動時
 - 各種パラメータ(JSON)の読込
 - 形状データの読込
 - ・Voxel分割データ(キャッシュ)の読込
 - 初回はVoxel分割データの生成, キャッシュの保存 - 理学データの読込(オプション)
- ・ 定常作業(クライアントからの要求に応じて)
 - 起動時に読み込んだデータを再利用
 - ・レンダリングに必要な前処理が不要
 - JSONパラメータの受け取り
 - データ生成
 - データ保存

コマンドラインスクリプト

- ・レンダリングの指示のみ
- ・各種パラメータをJSON形式で指定

模擬画像生成の必要性

- ・事例
 - リアルタイムの運用訓練 - 着陸地点選定訓練

-etc.

- ・ 画像生成装置に求められる機能・性能

 ーリアルタイム性
 - 高精細, 高精度
 - ・小惑星全体を、10cm程度の精度で模擬する
 - ・ONC-W相当: 高度100m程度の分解能

- 様々な光学機器の模擬

- ・ONC-W1, ONC-W2, LIDAR, 理学用カメラ等
- ・ 歪み
- -etc.

高精細化

- ・ (どちらかというと)速度より精度
- ・大容量主記憶
 - ポリゴンデータ, Voxel分割データ, 地質データ等(詳細版)
 - ~4億ポリゴン
 - ・主記憶128GB+
 - ・Voxel分割階層数:12
 - 最適: 14階層前後?

- 消費メモリとのトレードオフ

- ・理学データの反映(オプション)
 - データの読込
 - 画素値計算用関数(ライブラリ)の呼び出し

Voxel分割: サイズ比較

	ポリゴン数	階層数	Voxel数	キャッシュサイズ
例1	1.3M	10	1.5M	194MB
例2	1.3M	11	5.9M	731MB
例3	1.3M	12	23.4M	2,834MB
例4	369M	12	25.8M	5,520MB

模擬画像生成の必要性

- ・事例
 - –リアルタイムの運用訓練
 着陸地点選定訓練
 - -etc.

・画像生成装置に求められる機能・性能

- リアルタイム性
- 高精細, 高精度
 - ・小惑星全体を、10cm程度の精度で模擬する
 - ・ONC-W相当: 高度100m程度の分解能
- 様々な光学機器の模擬
 - ・ONC-W1, ONC-W2, LIDAR, 理学用カメラ等
 - ・歪み

-etc.

光学機器の模擬

- ・視野計算, アラインメント
 - OpenGLに準じた行列(4x4)定義
 - (OpenGLを用いた簡易プレビューとの連携)

歪の付加

- ・ 歪み除去関数(例)
 - 2次元のスクリーン(CCD等)座標系に対して
 - 例: R(r)= r * (A*r⁴ + B*r² + C)
 - -r: 歪み付き画像でのピクセル位置(中心からの距離)
 - R(r): 歪を除去した画像でのピクセル位置
- ・一般的な歪み付加
 - レンダリング後の(歪の無い)画像に対して
 - 歪み除去関数の逆関数を用いる
- ・レイトレーシングの歪み付加
 - レンダリング前の座標値に対して
 - 歪み除去関数を用いる

歪の付加

This document is provided by JAXA.

歪の付加

- 例: R(r) = r^* ($0^*r^4 + 0.2^*r^2 + 1$)
- ・樽型歪み

まとめ

- ・レイトレーシング
- ・リアルタイム性
 - Voxel分割
 - 並列処理
 - クライアント・サーバ
- 高精細, 高精度
 - 大容量主記憶
 - 理学データ、画素値計算用関数(ライブラリ)への対応 - オーバーサンプリング
- ・様々な光学機器の模擬
 - 視野、アラインメント: 4x4行列
 - 歪み除去関数