熊本 篤志, 遠藤 研, 石ケ谷 侑季 (東北大)

Experiment of lower hybrid resonance detection by wideband impedance probe for measurement of ion composition and electron number density

A. Kumamoto, K. Endo, Y. Ishigaya (Tohoku Univ.)

1. はじめに

本研究では、2016年度に引き続き、2017年4月 25~27日,および2017年8月28日~9月1日の 期間に,宇宙航空研究開発機構宇宙科学研究所の 大型スペースサイエンスチェンバを利用して,広 帯域インピーダンスプローブの試作モデルによ るプラズマ計測実験を実施した.2016年度にはプ ローブ・プラズマ間を流れる DC 電流成分を抑制 することによる低域混成共鳴(Lower hybrid resonance; LHR)検出を妨げる電子衝突周波数の低 減効果を期待して、試作モデルのプローブに DC 電圧を印可する実験を行ったが、明確な効果は認 められなかった. 但し, 2016年度の実験ではフロ ントエンド回路の時定数や印可電源に対するプ ローブ電位の追従性に問題があったため,2017年 度はこの点を改良した試作モデルで試験に臨ん だが、2016年度同様、印可電圧に関わらず、LHR 検出には至らなかった.併せて,2017年4月25 ~27 日の実験では, SS-520-3 号機搭載用 NEI/PWM(インピーダンスプローブ・プラズマ波 動観測装置)の環境試験・機能/性能試験の一環と して真空中動作確認・プラズマ計測機能確認を実 施した.本稿では,2017年度までのDC印可効果 の確認結果のサマリーと SS-520-3 号機搭載用 NEI/PWM の試験結果を中心に報告する.

2.広帯域インピーダンスプローブによる LHR 検出の原理

図1に、高度100 km, 150 km, 300 km の電離圏 プラズマ中で観測されると期待されるプローブ 容量の見積値を示す.プラズマ中のプローブ容量 CPは以下の式で見積もることができる.

$$\frac{1}{i\omega C_P} = Z_P + \frac{1}{i\omega C_S} \tag{1}$$

但しここで Cs はシース容量である. Zp はプロー ブ周辺のプラズマによるインピーダンスで以下 の式で表される[1,2].

$$Z_{P} = \frac{1}{i\omega 2\pi\varepsilon_{0}K_{\perp}L} \left(\ln\frac{L}{r} - 1 + \ln\sqrt{\frac{K_{\perp}}{K_{\parallel}}} \right) \quad (2)$$

$$K_{\perp} = 1 - \sum_{s} X_{s}U_{s} / \left(U_{s}^{2} - Y_{s}^{2}\right) \quad (3)$$

$$K_{\parallel} = 1 - \sum_{s} X_{s} / U_{s} \qquad (4)$$

$$K_{\perp} = 1 - \sum_{s} X_{s} / U_{s} \qquad (5)$$

$$X_s = \Pi_s^2 / \mathscr{O}^2 \tag{5}$$

$$Y_s = \Omega_s / \omega \tag{6}$$

$$U_s = 1 - iv_s / \omega \tag{7}$$

また*s*は粒子種, Π_s は粒子*s*のプラズマ角周波数, Ω_s は粒子 s のサイクロトロン角周波数, v_s は粒子 s の衝突周波数である.図1の各プローブ容量プ ロファイルは,表1のパラメータを式(1)~(7)に代 入して得られる.数 MHz 帯に見られるプローブ 容量の極小が,高域混成共鳴(Upper hybrid resonance; UHR)に対応し,数 kHz 帯に見られるプ ローブ容量の極小が LHR に対応する.O⁺, NO⁺, O_2^+ イオン及び電子から成るプラズマ中での LHR 角周波数 ω_{LH} は以下で表される.

$$\omega_{LH} = \sqrt{\frac{\prod_{0+}^{2} + \prod_{NO+}^{2} + \prod_{O_{2}^{+}}^{2}}{1 + \prod_{e}^{2} / \Omega_{e}^{2}}} \quad (8)$$

ただしここでПо+,По2+,Пе はそれぞれ O⁺,NO⁺,O₂⁺,電子のプラズマ角周波数,Ω_eは電子サ イクロトロン角周波数である.このようにLHR 周 波数はイオン密度・組成に依存するので, UHR 検 出を目的とした従来型インピーダンスプローブ の動作周波数帯域(0.1~25MHz)の下限を数100 Hz まで引き下げ LHR 周波数でのプローブ容量極 小を計測できるようにすることで、電離圏イオン の密度・組成の観測が可能となる. 但しここで電 子の衝突周波数の影響に注意する必要がある. 衝 突周波数が高いために, 高度 100 km では LHR 周 波数での極小を識別できないが、衝突周波数の低 い高度 150 km, 300 km では, LHR が十分検出可能 である. 2018 年度以降打上予定となった SS-520-3 号機は、極域カスプ領域のイオンアウトフロー 現象を観測対象としており、到達高度は 1000 km に及ぶ. 高高度では電子の衝突周波数はさらに低 く,LHRの検出にも適している.うまく計測でき れば、熱的イオン・低エネルギイオン計測とのク ロスチェックにも活用できる. そこで, SS-520-3 号機に搭載される NEI/PWM には、広帯域インピ ーダンスプローブ機能を実装している.一方,チ ェンバ内では衝突周波数を 1kHz 以下に抑えられ ないため、室内実験での LHR は基本的には困難 であると考えられてきた.

図1. 高度 100km, 150km, 300km の電離圏で観 測されるプラズマ中のプローブ容量の計算値

表1. 図1の計算で使用したパラメータ

Region	E	Е	F
ALT [km]	100	150	300
ν_{en} [Hz]	1e5	1e3	30
v_{in} [Hz]	1e4	1e2	1
B [nT]	43960	43960	43960
N [/cc]	1e5	1e5	1e6
O2+&NO+	100%	100%	0%
O^+	0%	0%	100%
Cs [pF]	30	30	30
L [m]	1.2	1.2	1.2
r [m]	0.01	0.01	0.01

広帯域インピーダンスプローブ試作機による プラズマ計測実験

2016年度・2017年度の実験では、計測周波数 帯 0.1~25MHz 及び 0.3~20kHz(交互掃引)の 広帯域インピーダンスプローブ試作機が用いら れた. DC 電圧印可のためのフロントエンド部(但 し 2017年度改良版)のブロック図を図2に示す. 真空引きした後, Ar ガスを導入して後方拡散プラ ズマ源で電離させるとともに、ヘルムホルツコイ ルに電流を流して、チェンバ内に 70000 nT(電 子サイクロトロン周波数:1.96 MHz)の背景磁場 を発生させた.この状態でプローブ電位 Vcom2を -9.0, -7.5, ..., 0.0, ..., +7.5, +9.0 V のように変化さ せ、0.1~25 MHz, 0.3~20kHz 各帯域でのプロー ブ容量プロファイルを確認した.

図 3~5 に V_{COM2} = 0.0, 1.5, 3.0 V の時の 1~10 kHz のプローブ容量プロファイルを示す. 0.1~ 25 MHz の帯域の計測で得られた電子数密度 4.6x10⁴/cc をもとに, Ar⁺ 100%として LHR 周波 数を推定すると 5.3 kHz であるが, 図 3~5 に示 すように、いずれの印可電圧においても、この周 波数付近のプローブ容量極小を確認することが できなかった.また、後方拡散プラズマ源で生成 した He+、大型紫外光源で生成した C_3H_6 イオン でも同様の計測を行ったが LHR の確認には至ら なかった.

図 3.1~10 kHz のプローブ容量プロファイル (V_{COM2} = 0.0 V)

図 5.1~10 kHz のプローブ容量プロファイル (V_{COM2} = 3.0 V)

4. SS-520-3 搭載用 NEI/PWM プラズマ計測試験

チェンバ内での LHR 検出は、電子の衝突周波 数低減が難しいため、広帯域インピーダンスプロ ーブの動作実証・改良は、フライトを通じて進め ていく必要がある. そこで SS-520-3 号機の観測 では, NEI/PWM 動作周波数下限を 1kHz に引き 下げることで、インピーダンスプローブによる初 の LHR 検出に取り組むことを予定している. 2017年4月25~27日の実験では、SS-520-3搭 載用 NEI/PWM によるプラズマ計測実験・真空中 動作試験を実施した(図 6). 試験時の NEI 振幅・ 位相データを図 7 (0.1~25MHz), 図 8 (0.3~ 20kHz), PWM スペクトルデータを図9(モノポ ールモード),図10(ダイポールモード)に示す. 1.3MHz付近にプローブ容量極小が計測されてお り、従来型 NEI と同様、UHR の検出性能に問題 がないことを確認できる.一方,チェンバ内のプ ラズマでは衝突周波数が高いため、0.3~20kHz の帯域内で LHR に対応するプローブ周波数極小 は確認できておらず高衝突周波数での平坦なプ ローブ容量プロファイルの確認にとどまった. PWM は試験時にはチェンバ外から信号を入力し て真空中での機能・性能確認を実施した. 搭載時 には低周波波動解析装置(LFAS)の共用アンテ ナ・プリアンプから信号を受け取る.

図 6. SS-520-3 NEI/PWM チェンバ試験時の設置状況

5. まとめ

宇宙航空研究開発機構宇宙科学研究所の大型 スペースサイエンスチェンバを利用して,LHRに よるイオン組成計測を目的とした広帯域インピ ーダンスプローブの試作モデルによるプラズマ 計測実験を実施した.2016・2017 年度に,プロ ーブ・プラズマ間を流れる DC 電流成分を抑制す ることで,低 LHR 検出を妨げる電子衝突周波数 の低減効果を期待して,試作モデルのプローブに DC 電圧を印可する実験,複数のプラズマ源(後 方拡散プラズマ源・大型紫外光源)による実験, を行ったが,明確な差異は認められず,残念なが らチェンバでの LHR 検出実験手法の確立には至 らなかった.

今後,広帯域インピーダンスプローブによる LHR 検出・イオン組成導出の動作実証・改良を進 めていくためには、観測ロケットに搭載して、電 離圏での試験計測を重ねていかざるを得ない. そ の目的のため, SS-520-3 号機では NEI/PWM を 広帯域化して下限周波数を 0.3kHz に引き下げる. 2017年4月25~27日の実験では、SS-520-3号 機搭載用 NEI/PWM の環境試験,機能・性能試験 を実施し、従来型のNEI 同様に UHR 検出が可能 なこと,LHR 周波数帯のプローブ容量計測が可能 なこと,真空中の動作に問題がないことを確認し た. SS-520-3 号機の飛翔実験は、観測ロケット・ バス機器の不具合により 2018 年度以降に延期さ れることとなったが,飛翔実験の際には,上記試 験を経た NEI/PWM を搭載し, 電離圏高度でイン ピーダンスプローブによる初の LHR 検出を試み ることを予定している.

謝辞

本研究は、宇宙航空研究開発機構宇宙科学研究 所スペースプラズマ共同利用設備の大型スペー スサイエンスチェンバを用いて行われました.実 験計画においては ISAS 阿部琢美准教授に、実験 設備の運用には ISAS 岩倉優太氏に大変お世話に なりました.ここに感謝の意を表します.

参考文献

[1] Wakabayashi, W., T. Suzuki, J. Uemoto, A. Kumamoto, and T. Ono (2013), Impedance probe technique to detect the absolute number density of electrons on-board spacecraft, An Introduction to Space Instrumentation, edited by K. Oyama and C. Z. Cheng, 107–123.

[2] Balmain (1964), K. G., The impedance of a short dipole antenna in a magnetoplasma, IEEE Trans., AP12, 5, 605–617.