

S. Kasahara¹, S. Yokota¹, T. Mitani¹,

K. Aasamura¹, M. Hirahara², K. Yamamoto³, and T. Takashima¹
1: ISAS/JAXA, 2: Nagoya Univ., 3: Kyoto Univ.

ERG (あらせ)

- 2016年12月20日 打ち上げ (イプションロケット,内之浦SC)
- クリティカルフェイズを終了(1/23)
- 各観測器の初期運用中(高電圧印加など)

ERG 衛星搭載 MEPi/MEPeの開発

• ERG: 放射線帯探査衛星, 2016年度打ち上げ

- 太陽系の惑星に放射線帯が見つかっている
 - 地球,木星,土星,天王星,海王星
- 相対論的エネルギー(>MeV)の電子が磁気圏にトラップされている

磁気圏プラズマの大問題:激変する放射線帯

- 磁気嵐に伴って大変動が起こる(半日でフラックス3ケタ以上の変化)
- MeV電子はどこに消えるのか
- どのようにして電子を相対論的エネルギー (~MeV) にまで加速するのか
 - cf. 太陽風の電子は~100eV

加速機構:対立する2つの仮説

• 外からの輸送に伴う加速

- 内部での加速
- ・ 電磁波(~mHz)によるドリフト共鳴
 加速?

電磁波(~kHz)によるサイクロトロン
 共鳴加速?

NASAのVan Allen Probes打上げ(2012)後も決着はついていない ←大局的な空間構造と同時に、ミクロの物理過程を観測的に抑える事が必要

放射線帯のミクロ過程: cyclotron共鳴 エネル 放射線帯 加速 消失 **1**MeV EMIC波動 Whistler波動 励起 リングカレント 1keV 1 eVプラズマ圏

- 電磁場と粒子のエネルギー授受により波動励起や粒子加速が起きる(と考えられる)
- (時間分解能の問題で) 観測的な検証は難しかった
- 中間エネルギー帯粒子の観測自体が困難だった

ERG mission

科学目的: 宇宙嵐時における放射線帯ダイナミクスの理解
 中間エネルギー帯(10-200 keV)を計測するMEPi/MEPeを搭載
 高時間分解能(~µs)の波動粒子相互作用分析softwareを搭載

MEPe, MEPiの開発

- 2016年度は、D棟3Fスペースプラズマ実験室を利用して、 MEPe/iフライトモデルの機能性能試験などを実施した
 - システム振動試験後の各種確認
 - クリンベンチを利用し、外観確認やトルク確認などを実施
 真空槽内でのイオンビーム照射(質量分析較正データ取得)
 試験

Specification of MEPi and MEPe

	MEPi	MEPe
Energy range	< 10−180 keV/q	< 10−80 keV
FOV	~360deg×5deg	~360deg×5deg
Mass range	1-32AMU/charge	
Mass discrimination	H+, He++, He+, O+	
Energy resolution	~15%	~10%
Angular resolution	10deg×22deg	5deg×5deg (per APD)
G-factor	5×10^{-3} cm ² sr keV/keV (3×10^{-4} cm ² sr keV/keV/sector)	1.5×10^{-3} cm ² sr keV/keV (1 × 10 ⁻⁴ cm ² sr keV/keV/apd)
Time resolution	4sec per 3D VDF (for 8-sec spin period)	4sec per 3D VDF (for 8-sec spin period)
Mass	10 kg	8.2 kg
Power	22 W	21. W
Dimension	\sim 300 mm ϕ × 400 mm	\sim 300 mm ϕ × 400 mm
Data rate (max, before compression)	52kbit/(spin/16)	(normal data) 15 kbit/(spin/32) (S-WPIA)1.68 Mbps

MEPeの計測原理

 高エネルギー電子による 背景雑音を除去するため, ESAとAPDでエネルギー の整合性をとる

- Energy(E), Mass(m), and charge state(q) are measured (10-180 keV/q)
- W-coincidence: START+STOP signals → m/q
- T-coincidence: START+STOP+SSD signals → m, q

MEPiのビーム試験(TOF)

TOFの実験データは、振動試験前後で変化なく、
 設計通りに質量弁別できている

Summary

- MEPe/MEPi フライトモデルのシステム振動後の 確認・試験を実施した
 - システム振動試験後の各種確認
 - クリンベンチを利用し、外観確認やトルク確認などを 実施
 - 真空槽内でのイオンビーム照射(質量分析較正デー タ取得)試験
- 現在,軌道上で初期運用中
 所期の性能が確認されつつある