熊本 篤志, 遠藤 研, 石ケ谷 侑季 (東北大)

## Experiment of lower hybrid resonance detection by wideband impedance probe for measurement of ion composition and electron number density

A. Kumamoto, K. Endo, Y. Ishigaya (Tohoku Univ.)

### 1. はじめに

本研究では、2016 年 8 月 30 日~9 月 2 日、お よび 2017 年 2 月 13~17 日の期間に、宇宙航空研 究開発機構宇宙科学研究所の大型スペースサイ エンスチェンバを利用して、広帯域インピーダン スプローブの試作モデルによるプラズマ計測実 験を実施した.2016 年度は特にプローブ・プラズ マ間を流れる DC 電流成分を抑制することで、 LHR 検出を妨げる電子衝突周波数の低減に効果 がないかどうかを確認するために、プローブへの DC 電圧印可を試みた.

## 2.広帯域インピーダンスプローブによる LHR 検出の原理

電離圏の電子密度に加えてイオン密度・組成計 測が行えるように広帯域化された新型のインピ ーダンスプローブ装置の開発を進めている.現行 のインピーダンスプローブは0.1~25 MHzの周波 数帯域で,プラズマ中でのプローブ容量が極小と なる高域混成共鳴(UHR)周波数を計測することに よって電子密度を導出する[1].プローブ容量が極 小となる周波数は低周波域にも存在し,低域混成 共鳴(LHR)周波数と呼ばれる.O<sup>+</sup>,NO<sup>+</sup>,O<sub>2</sub><sup>+</sup>イオン 及び電子から成るプラズマ中でのLHR 角周波数 *o*LH は以下の式で表される.

$$\omega_{LH} = \sqrt{\frac{\Pi_{O+}^2 + \Pi_{NO+}^2 + \Pi_{O_2+}^2}{1 + \Pi_e^2 / \Omega_e^2}} \quad (1)$$

ただしここで $\Pi_{0+},\Pi_{N0+},\Pi_{02+},\Pi_e$ はそれぞれ  $O^+,NO^+,O_2^+,$ 電子のプラズマ角周波数, $\Omega_e$ は電子サ イクロトロン角周波数である.LHR 周波数はイオ ン密度・組成に依存するので、インピーダンスプ ローブの動作周波数帯域の下限を 100 Hz まで拡 大し、電離圏で LHR 周波数でのプローブ容量の 極小を計測できるようにすることで、電離圏イオ ンの密度・組成の観測が可能となる.

図1に,高度100 km,150 km,300 kmの電離圏 プラズマ中で観測されると期待されるプローブ 容量の見積値を示す.プラズマ中のプローブ容量 *C*<sub>P</sub>は以下の式で見積もることができる.

$$\frac{1}{i\omega C_P} = Z_P + \frac{1}{i\omega C_S} \tag{2}$$

但しここで C<sub>s</sub>はシース容量である. Z<sub>P</sub>はプロー ブ周辺のプラズマによるインピーダンスで以下 の式で表される[2].

$$Z_{P} = \frac{1}{i\omega 2\pi\varepsilon_{0}K_{\perp}L} \left( \ln\frac{L}{r} - 1 + \ln\sqrt{\frac{K_{\perp}}{K_{\parallel}}} \right) \quad (3)$$

$$K_{\perp} = 1 - \sum_{s} X_{s}U_{s} / \left(U_{s}^{2} - Y_{s}^{2}\right) \quad (4)$$

$$K_{\parallel} = 1 - \sum_{s} X_{s} / U_{s} \qquad (5)$$

$$X_{s} = \Pi_{s}^{2} / \omega^{2} \qquad (6)$$

$$Y_s = \Omega_s / \omega \tag{7}$$

 $U_s = 1 - i v_s / \omega \tag{8}$ 

ただしここでsは粒子種, $\Pi_s$ は粒子sのプラズマ 角周波数, $\Omega_s$ は粒子sのサイクロトロン角周波数, vsは粒子 sの衝突周波数である.図1の各容量プ ロファイルは,表1のパラメータを式(2)~(8)に代 入して得られる.衝突周波数が高いために,高度 100 km では LHR 周波数での極小が識別できない が,衝突周波数の低い高度 150 km,300 km では, LHR が十分検出可能である.2017 年度冬に打ち 上げ予定の SS-520-3 号機は,極域カスプ領域のイ オンアウトフロー現象を観測対象としており,到 達高度は 1000 km に及ぶ.高高度では電子の衝突 周波数はさらに低く,LHR の検出にもさらに適し ており,うまく計測できれば,熱的イオン・低エ ネルギイオン計測とのクロスチェックにも活用 できることが期待される.そこで,SS-520-3 号機 に搭載される NEI/PWM (インピーダンスプロー ブ及び高周波プラズマ波動モニター)には,広帯



図1. 高度 100km, 150km, 300km の電離圏で観 測されるプラズマ中のプローブ容量の計算値

表1. 図1の計算で使用したパラメータ

| Region             | E     | Е     | F     |
|--------------------|-------|-------|-------|
| ALT [km]           | 100   | 150   | 300   |
| $\nu_{_{en}}$ [Hz] | 1e5   | 1e3   | 30    |
| $\nu_{_{in}}[Hz]$  | 1e4   | 1e2   | 1     |
| B [nT]             | 43960 | 43960 | 43960 |
| N [/cc]            | 1e5   | 1e5   | 1e6   |
| $O_2^+ \& NO_+$    | 100%  | 100%  | 0%    |
| $O^+$              | 0%    | 0%    | 100%  |
| Cs [pF]            | 30    | 30    | 30    |
| L [m]              | 1.2   | 1.2   | 1.2   |
| r [m]              | 0.01  | 0.01  | 0.01  |

域インピーダンスプローブ機能を実装すること を予定している. 2017 年 2 月の実験では, 2016 年 度前半に製造した SS-520-3 用 NEI/PWM の試作 機を用いて,より搭載時に近いプラズマ計測試験 を行った.本稿では, 2017 年度 2 月の実験結果 を中心に報告する.

# 広帯域インピーダンスプローブによるプラズ マ計測実験

2017年2月の実験では,SS-520-3用NEI/PWM の試作機が用いられた. NEI/PWM 試作機の計測 周波数帯は0.1~25MHz又は1~10kHz(切替式) でいずれも掃引周期は 125ms である. NEI/PWM 試作機では、プローブの DC 電圧印可機能を実装 していないため、実験では図2のブロック図に示 すように、チェンバ本体を基準電圧 OV として、 これに対し直流電源装置で V<sub>COM2</sub>[V]の DC 電圧 を生成する. NEI/PWM の1次電源 GND は 0V に接地し、2次電源 GND を V<sub>COM2</sub>に接続する. プローブと2次電源間は抵抗(10MHz)で接続さ れているため、電流が流れなくなったところでプ ローブ電位 VPは VCOM2 と一致することが期待さ れる.このNEI/PWM 試作機を,接地系統に注意 しつつ, チェンバ内に固定設置した. また比較用 に従来型のインピーダンスプローブも並べて設 置した (図 3). 真空引きした後, Ar ガスを導入 して後方拡散プラズマ源で電離させるとともに, ヘルムホルツコイルに電流を流して, チェンバ内 に 70000 nT (電子サイクロトロン周波数: 1.96 MHz)の背景磁場を発生させた.この状態で VCOM2を0.0, 0.5, 1.0, ..., 4.0 Vのように変化させ, 0.1~25 MHz の帯域での計測データ、1~10kHz の帯域での計測データを確認した.

図4に $V_{COM2} = 0 \sim 4 V$ の時の $0.1 \sim 25 \text{ MHz}$ の 等価容量プロファイルをy軸をずらしながら重ね たプロットを示す.  $0.1 \sim 25 \text{ MHz}$ の帯域では,従 来型のインピーダンスプローブと同様に UHR に よる等価容量の極小,シースレゾナンスによる等 価容量の極大を確認することができる. 図4の計 測例では,UHR 周波数は 2.75 MHz で,これよ



図 2. NEI/PWM 試作機のブロック図



図 3. チェンバ内での設置状況

りプラズマ周波数が1.93 MHz, 電子数密度が4.6 x 10<sup>4</sup> /cc だったことがわかる.また,いずれの Vcom2でも,UHR 周波数,シースレゾナンス周波 数,等価容量値の平均・分散に大きな差は見られ なかった.

図 5~7 に V<sub>COM2</sub> = 0.0, 1.5, 3.0 V の時の 1~10 kHz の等価容量プロファイルを示す. 0.1~25 MHzの帯域の計測で得られた電子数密度 4.6x10<sup>4</sup> /cc をもとに, Ar<sup>+</sup> 100%として LHR 周波数を求 めると 5.3 kHz であるが, 図 5~7 の等価容量 プロファイルでは, この周波数付近の極小を確認 することができなかった. また V<sub>COM2</sub>の変化に対 して, 等価容量プロファイルの分散が V<sub>COM2</sub> = 0.0 V, 3.0 V で大きいのに対し, V<sub>COM2</sub> = 1.5 V では最



図 4. 0.1~25 MHz の等価容量プロファイル

小となる傾向が確認された. 等価容量の分散は, プローブに流れるノイズ電流によるものと推測 される.  $V_{COM2}$ =1.5 V で最小になるのは, プロー ブ電位がプラズマ中で 1.5 V だったために,  $V_{COM2}$ = 1.5 V の際に 10 M  $\Omega$  を流れる電流が最小となっ ていたことを示している.

図 4~7 の計測では,NEI/PWM 試作機による 電子密度計測で,問題を生じなかったが,後方拡 散プラズマ源の設定を変更して,より高密度のAr プラズマを生成して計測を試みたところ, NEI/PWM 試作機の出力データが飽和する場合 が見られた.一方,比較用の従来型インピーダン スプローブではこの現象は見られなかった.



図 5.1~10 kHz の等価容量プロファイル

 $(V_{COM2} = 0.0 V)$ 



図 6.1~10 kHz の等価容量プロファイル





図 7.1~10 kHz の等価容量プロファイル (V<sub>COM2</sub> = 3.0 V)

#### 4. 考察

今回の実験では、プローブと NEI/PWM 試作機 の 2 次電源 GND が 10 MΩで接続されているこ とから、プローブ・2 次電源 GND 間の電荷移動 は速やかに終了し、プローブの DC 電位 Vp は基 本的に VCOM2 に追随するものと期待していた. 真 空中のプローブに対してはそうした挙動が期待 できるが、プラズマ中のプローブは、周辺プラズ マとの間で電荷の移動が生じるために,むしろ VP はもっぱら背景プラズマの密度・温度等に依存し て決まり(図 5~7のプラズマ中では 1.5 V), VP-VCOM2 間の電位差に応じて 1~10 kHz の周波数 帯では 10 ΜΩにノイズ電流が流れていたものと 考えられる. また 0.1~25 MHz の帯域の計測で VCOM2を変化させてもシース周波数の変化が見ら れなかったことも、プローブの DC 電圧・周辺プ ラズマの状態が不変であったことを裏付ける.

本実験では、上述の VCOM2 でプローブ電位が有 効に制御できていなかった問題に加えて, 広帯域 化した NEI/PWM 試作機でのみ発生する出力デ ータ飽和の問題が明らかになった.発生状況の詳 細を確認した結果, 飽和の直接的な原因はアナロ グ部の最終出力が A/D の入力レンジを超えるよ うな大きな DC 成分を持っていることによるもの で、この大きな DC 成分の原因をたどると、フロ ントエンドの容量ブリッジの出力をピックアッ プする差動アンプの入力側に置いた RC LPF(従 来型 NEI では 0.1 μF, 10 MΩ,時定数:1秒)を 過大に低周波化(47 μF, 10 MΩ,時定数:470秒) しており、プラズマ中でプローブがもつ DC 電位 を実質的にカットできていなかったための事象 であることが判明した. 従来型 NEI でも1kHz の信号は十分通すので, RC LPF は従来型 NEI の ものに戻すこととした.

#### 5. 結論

宇宙航空研究開発機構宇宙科学研究所の大型 スペースサイエンスチェンバを利用して,SS-520-3に搭載予定のNEI/PWM 試作機によるプラ ズマ計測実験を実施した.特にプローブ・プラズ マ間を流れる DC 電流成分の抑制・LHR 検出を 妨げる電子衝突周波数の低減の効果有無を確認 するために, NEI/PWM の2次電源 GND に DC 電圧を印可する方式で, プローブの DC 電位制御 を試みたが, プローブ電位がもっぱら背景プラズ マの条件によって決定されることから, この方式 は(プローブ電位の決定には有効だが)プローブ 電位の制御には適当でないことが判明した.また, プローブ電位が DC 電位を持つことによって,大 気中の実験では気づかないような広帯域化の設 計変更に伴う不具合を発見することができた.

2017 年度の実験では、プラズマ計測実験を通 じて、SS-520-3 号機フライト機の機能・性能検証 を進め、かみ合わせ試験・射場運用に万全を期し、 電離圏で初の LHR 検出によるイオン組成計測の 実現を目指す.また、2016 年度の実験で達成に至 らなかったプローブの DC 電位制御に引き続き取 り組む.容量ブリッジの印可信号に DC 電圧を付 加する方式を検討している.

#### 謝辞

本研究は、宇宙航空研究開発機構宇宙科学研究 所スペースプラズマ共同利用設備の大型スペー スサイエンスチェンバを用いて行われました.実 験計画においては ISAS 阿部琢美准教授に、実験 設備の運用には ISAS 中園智幸氏、岩倉優太氏に 大変お世話になりました.ここに感謝の意を表し ます.

#### 参考文献

[1] Wakabayashi, W., T. Suzuki, J. Uemoto, A. Kumamoto, and T. Ono (2013), Impedance probe technique to detect the absolute number density of electrons on-board spacecraft, An Introduction to Space Instrumentation, edited by K. Oyama and C. Z. Cheng, 107–123.

[2] Balmain (1964), K. G., The impedance of a short dipole antenna in a magnetoplasma, IEEE Trans., AP12, 5, 605–617.