小型衛星における電離層観測と、電位制御用の電子銃の開発

○宮崎貴大¹⁾, Josaphat Tetuko Sri Sumantyo¹⁾, 小山孝一郎²⁾,

阿部琢美3), 中園智幸3), 児玉哲哉3)

1)千葉大学,2)台湾国立成功大学,九州大学,3)JAXA

<u>zakky6310tkhr@chiba-u.jp</u>

1. はじめに

日本での電離層観測は地上からの観測を含める と 50 年以上も前から行われており,電離層の変動 が短波を用いる通信や測位衛星電波を用いる精密 な測位などに及ぼす影響について研究されている. 電離層観測衛星としては,日本で初めての実用衛星 である『うめ』をはじめとした大型衛星が使用されて いたが,今後は衛星技術の発達とともに地球観測衛 星は従来の大型で長期運用のものから低コスト, 短期運用の小型のものへと変化し,最新の観測機 器の使用が可能となっている.また,小型衛星を 多数用いた小型衛星郡による大規模な観測が計画 されている.千葉大学の当研究室でも地球の地殻 変動を観測する小型衛星 GAIA シリーズの運用を 計画 いしている.

電離層は大気中の主な成分である窒素が太陽からのエネルギーによって電子と正イオンに電離したプラズマ状態となっている.衛星での観測は、 一般的なプラズマ測定器であるラングミュアプロ ーブ法によって行われる.しかしながら、小型衛 星のように衛星構体が少ない場合、衛星の電位が 負の方向に大きく変化することが問題となる.こ の問題の解決策として、熱電子放出を用いた衛星 電位の制御方法を提案する.

本稿では、スペースチェンバーを使用し、試作 した電子銃を用いた、小型衛星の電位制御実験の 結果について報告する.

2. 研究の概要

2.1. ラングミュアプローブ法について

ラングミュアプローブ法は 1927 年にラングミ ュアによって発表されたプラズマの測定方法 ²⁾で ある.プラズマ中に金属の電極(プローブ)を挿入し, 基準電極(チェンバー壁や衛星構体など)間に電圧 を印加するとプラズマ中の電子がプローブに引き 寄せられ,電流が流れる.この時の電流と電圧の 関係から電子温度と電子密度を計算することがで きる.電子温度と電子密度はプラズマを知るため の重要なパラメータとなる.図1に実験で使用し たラングミュアプローブの回路の略図を示す.

プローブで測定された電流は,数μA 程度と微 小なので,オペアンプを使用した電流電圧変換回 路によって増幅され電圧として得られる.得られ る電圧にはプローブに印加した電圧も含まれてい るため,差動アンプや計装アンプで印加電圧を除 去し,電圧に変換されたプローブ電流のみを測定 する.

2.2. 衛星構体グラウンドの変化

ラングミュアプローブのようにプローブと基準 電極となる衛星構体の間に電圧を加える測定器の 場合,電離層内において衛星構体の電位(構体グラ ウンド)が電極に加える電圧を増加させると負の 方向へ沈む現象が見られる.大型衛星のように構 体グラウンドが十分な面積として確保できる場合 では問題とならないが,小型衛星や超小型衛星の ようにソーラーパネルや他の観測機器の取り付け で十分な面積が確保できない場合には正常な電離 層観測が行えない.衛星電位変動のメカニズムは 図2のようになる.

一般的に電離層を飛行する人工衛星は衛星構体 に電子が飛び込むため負電位となっている. これ は、電子の熱速度が正イオンの熱速度よりも速い ため衛星に到達する電子の量が多いためである. この状態を①に示す.

図 2. 衛星電位変動のメカニズム

②では、ラングミュアプローブを使用し、プロ ーブに電圧を加え始めた様子を示している.プロ ーブに電圧が印加されるとプローブには電子が引 き寄せられプローブに電流が流れる.この際、衛 星は電気的な中性を保つ、つまり衛星に収集され る電子の量と正イオンの量を同じにするために、 基準電極となる衛星構体で正イオン(点線青丸で 表されたイオン)が収集される.

更にプローブ電圧を更に上昇させると、プロー ブで収集される電子の量も増加する. 当然ながら 衛星構体で収集される正イオンの量も増加するが、 収集される量は衛星構体の面積で決まる. しかし、 衛星構体には電子が飛び込んでくるため、正イオ ンの収集を阻害し,収集される正イオンの量が中 性を保つのに必要な量よりも少なくなる.このため,衛星電位は①の場合よりも更に負の電位をとる.

2.3. 熱電子放出と電位制御

衛星電位の変動は、衛星構体に溜まっている電 子によって正イオンの収集が阻害され起きると考 えられる. このため、溜まっている電子を衛星構 体から何らかの方法で除去・放出し正イオンの収 集量を増やすことで改善できると思われる. 今回 の実験では、熱電子放出と呼ばれる方法を用いて 電子の放出を行った.

熱電子放出とは、熱エネルギーを用いて、金属 内の自由電子を外部へ放出する方法で、1880年代 には、T.A.Edisonの実験で確認されており、その 後 O.W.Richardson によって理論的な裏付けが行 われた.³⁾

電子を放出するための金属としては,高温での 耐久性,電子の放出性の観点から,タングステン を用いた.タングステンは硬く,割れやすいため 本実験では直径 0.15mm のタングステン線を用い てタングステンコイルを作成し,電流によって加 熱することで熱電子を放出する電子銃を作成した. 図 3 に作成した電子銃を示す.

図3. 作成した電子銃

3. 実験と考察

3.1. 実験に使用したシステム

実験では、チェンバー内にアルミニウム製の小型衛星模型(20cm×20cm×20cm)を設置した. 模型の内部にはラングミュアプローブ測定システム、通信システム、バッテリーを搭載している. 衛星電位の測定には、衛星構体とチェンバー壁を絶縁しフローティングさせる必要がある. チェンバーの内部と外部とをつなぐフランジにはフローティングできるものもあるが、チェンバー外にあるさまざまな機器からのノイズが測定に影響を及ぼすため、本実験では、Xbeeと呼ばれる無線モジュールを使用し完全に絶縁した状態で測定した. チェンバー外から通信モジュールを通して、測定データの受信、ラングミュアプローブに印加する周波

数や電圧を変更できる.図4に模型内部の様子を 示す.

電子銃の出力は、ラングミュアプローブのプロ ーブ電流が数µA 程度であるため、事前に行った タングステンの熱電子放出実験の結果より 1.7A の電流をタングステンコイルに流し3~5µA程度 の熱電子を放出した.

図 5 に実験時の様子を示す.衛星模型には,衛 星構体に見立てた 20cm×20cm の銅板を使用した. (図 5 のグラウンド面)

図4. 作成した衛星模型内部の様子

図 5. 使用中の電子銃(左)と チェンバー内に設置された測定システム(右)

3.2. 構体グラウンド変化による影響

図 6 に上からチャンバー壁と接続し、衛星構体 の面積が無限大の場合、接続を切断しフローティ ングした場合、電子銃を使用した場合の実験結果 を示す.

衛星構体とチェンバー壁を接続した場合では, プローブ電圧と印加電圧は等しいためグラフでは 重なっている. また,衛星電位はチェンバー壁の 電位となるため OV で一定となる.

フローティングの状態では、印加電圧が約2.25V 付近でプローブ電圧が上昇しなくなる. この時、 衛星電位は負の方向へ沈んでいることがわかる. 沈んだ電圧とプローブ電圧を足し合わせると印加

図 6. 実験結果

電圧と等しくなることもわかる.

電子銃を使用した場合では印加電圧が約 2.5V 付近でプローブ電圧が上昇しなくなることがわかる.

これらのことから,電子銃を使用した場合,使 用しない場合よりも約0.25V高い印加電圧まで測 定できるようになることがわかる.

衛星電位について 3 つの状態を比較したグラフ が図 7 である. 電子銃を使用した場合では,フロ ーティングした場合と比べて約 0.22V 程度,正の 方向へ改善していることがわかる. 改善が 0.2V に留まった原因には,電子の放出によって正イオ ンを収集できる場所ができたが,その場所に再度 電子が飛び込み正イオンの収集が阻害されている ことが考えられる. よって熱電子の放出量を約 10 倍程度多くし,正イオンの収集量を確保する必 要があると思われる.

図7. 衛星電位の比較

謝辞

本研究のプラズマチェンバ実験は、『宇宙航空研 究開発機構宇宙科学研究所スペースプラズマ共同 研究設備』を利用して行いました. また、千葉大 学環境リモートセンシング研究センター共同利用 (平成26年度、平成27年度)の支援を受けまし た.ここに感謝の意を表します.

参考文献

- 井村 信義,スマンティヨ ヨサファット テトォコ スリ,宮崎 貴大 宇宙科学技術連合講演会講演集 58,6p,2014-11-12
- 2) I. Langmuir and H.M. Mott-Smith, Gen. Elec. Rev. 27, 443,

538, 616, 762, 810 (1924).

 William Henry Prece, "Glow-Lamps raised to High Incandescence", Proceedings of Royal Society, 219/230, (Mar.26, 1885)