火星地表面大気環境を模擬した音響伝搬特性の計測

山本 真行、藤津 裕亮 (高知工科大学 システム工学群)

目	的∶電磁波・音波・発光観測のターゲット	
~	電磁波音波の同時観測により火星放電を高精度リモートセンシング	火星放電電磁波観測
~	地球以外の惑星大気中における <u>世界初の放電観測・音波観測</u> を実現	として提案
~	火星大気中ダストイベントの広域探査(~400 km)が可能	ţ
~	砂の惑星の気候制御へのダストイベントのインパクトを定量可能	NASA Mars 2020
~	<u>ストーム形成</u> に繋がるマイクロダスト持ち上げへの静電場の貢献度を定量	AO への提条: 電磁波 と音波の観測を複合 (2014)
~	火星における <u>流星・隕石</u> の検知(火星軌道上の流星体Fluxの測定)	1
~	将来の火星有人探査に向けたハザード知識の蓄積にも貢献	JAXA中型AO
~	世界初の「火星雷」や「火星の音」は一般へのアピール、アウトリーチにも 重要	MELOSサブ機器とし ての提案(2015)
-		Ļ
電	磁波・首波観測の 地表面・生命探査への沽用	着陸探査用機器への
~	活動領域(水流、 <mark>ガス放出</mark> 、表層崩壊、 <u>ダスト現象</u>)の探索	開発を地道に継続
~	放電や隕石によるハザード検知	&
~	ダストイベントによるハザードの事前察知	PD-SR計画の一部と
~	ローバー機能の状況確認	しての提案 (火星夜面発光観測)

2. サクセスクライテリア 科学日標日的 (理学的) 雷放電による電磁波の検出(E, B) 雷放電・火星ダスト現象による音波の検出 火星大気中での人工音の検出 (工学的) 放電によるハザードの推定 ダストイベントによるハザードの推定 火星大気中の音波意思伝達の可能性探索 C image of a dust devil (20. NASA's Planetary Pl [Farrell et al., 2004] (ミニマムサクセス 火星放電の検出.ダストデビル発生数の日周期変動を把握する. (フルサクセス) メソ(数100 km)スケールでのダストデビル分布を明らかにする. 放電による探査機本体への危険性評価を行う. (エクストラサクセス) ダストイベントのうち放電を伴う割合」直径、特続時間:光学的厚さとの相関を 明らかにする:火星における隕石現象の検出象の検出

3. 新たに獲得する知見

- 火星における放電の検出、放電規模分布に関する新たな知見
- 火星における音の検出, 音速に関する新たな知見
- ダストデビルの分布・発生頻度(時間、空間)
- ダストストームの発達過程に関する知見:発生・移動・盛衰
- ダストデビル発生の依存性(地方時,季節,気象条件,地表面状況)の統計的理解
- ダストイベントへの静電場の貢献度の理解
- 電離圏・地表面/地下構造の推定
 (電磁波の伝搬パスにおける減衰量から表面の誘電率=水分布の理解)
- 隕石落下・気圧波イベントの頻度(衝撃波の検出)
- ・ 音速分布から火星大気の理解(緩降下時や近接した2点観測が可能な場合)
- 高度20 km以下の音速分布(大気構造)(分離等の点火音の利用)
- 放電が探査機や有人活動に与えるハザードの定量的知見(SKG)・貢献
 ※ SKG: Strategic Knowledge Gap

検知予測範囲の推定(音)	成)					
以上から、音波観測では、マイクの違いによる検知予測範囲は以下にまとめられる。						
\sim	検知予測範囲					
	10 Hz (複数マイク必須)	100 Hz	1 kHz			
地球の雷と同等規模の放電	5000 km	50 km	500 m			
地球の雷の1/10の規模の放電	500 km	5 km	50 m			
地球の雷の1/100の規模の放電	50 km	0.5 km	5 m			

まる	とめ
----	----

- スピーカー破損のため、残念ながら当初目的の1つの音波減衰特性取得はできなかった。
- リークバルブを活用した微少量大気流入実験により、ガス放出を模擬した実験に成功した。
- ・極限環境での低周波音の検知には、コンデンサマイクのアレイが適しているという結果となった。