ポリカーボネイトへの球形飛翔体の 超高速貫入過程における飛翔体損傷の影響

○黒田 祐馬(東大・院),川合 伸明(熊大・パルス研)
 長谷川 直(ISAS/JAXA),佐藤 英一(ISAS/JAXA)

Abstract

Hypervelocity impact experiments of spherical projectiles were performed on polycarbonate target using a twostage light-gas gun to observe penetration depth and the behavior of penetration. They were observed using ultrahigh-speed video cameras and penetration depth was normalized by equation of penetration. We also calculated drag coefficient C_d of projectile, found that C_d was about 1.0 when the projectile keep its original form. On the other hand, C_d was about 2.0 when projectile fractured by the impact. We imply that penetration depth was fitted well by equation of penetration when C_d can be regarded constant without depend on projectile material.

Key Words : Hypervelocity Impact, Spherical Projectile, Penetration, Drag Coefficient

1. 緒言

近年,多くの宇宙探査や人工衛星による宇宙科 学研究,宇宙利用が行われているが,それらの発 展に伴いスペースデブリ(宇宙ゴミ)が増加して いる.宇宙空間には大小様々なスペースデブリが 存在し,低軌道上では7,8 km/sの超高速で周回し ており,他の宇宙機との超高速衝突が問題視され ている.

我々は宇宙構造材料に対する超高速衝突による 損傷進展過程の解明を目的とし,球形飛翔体の超 高速衝突実験を行った.損傷進展過程の直接観察 を行うため,透明材料であるポリカーボネイトを ターゲットとして選定し,超高速ビデオカメラに よる実時間観察を試みた.

超高速衝突によって宇宙構造材料は飛翔体貫入 による損傷を受ける.これに関する従来研究とし て主にターゲットの損傷予測式が構築されており, 飛翔体の貫入深さは飛翔体の直径,密度,衝突速 度に依存している¹⁾.つまり一般に,飛翔体のも つ運動エネルギーが大きいほど貫入深さは大きく なる.

しかし研究過程において,飛翔体の速度を大き くした際,貫入深さの著しい減少が確認された. これは衝突により飛翔体が破壊し,投影面積の増 加により貫入抵抗が増加したためだと考えられる. ポリカーボネイトは衝突インピーダンスが小さく, 飛翔体損傷が貫入深さに対して大きく影響を与え ると考えられる.

本研究では球形飛翔体を用いた場合の,飛翔体 損傷を考慮したポリカーボネイトへの貫入深さの 一般化を目的とし,超高速衝突実験を行った.

2. 実験条件

超高速衝突実験は ISAS/JAXA 所有の二段式軽 ガス銃を用いて行った. ターゲットにはポリカー ボネイト板 80×80×30 mm³ を用い, 80×30 mm² の 面を衝突面とする Edge on Impact と呼ばれる手法 を用いた.飛翔体には直径 3.2 mm の WC, SUS (SUS304), ZrO₂, Al₂O₃, Glass (Soda-lime glass), Al (A5052)球を用いた.衝突速度はそれぞれの飛翔 体で 1 ~ 7 km/s とし,衝突による飛翔体貫入過程 を高速度ビデオカメラを用いて撮影した.実験終 了後,得られた動画をもとに連続画像を取得し, 飛翔体貫入深さ及び貫入挙動を測定した.

3. 実験結果

Fig.1 に ZrO₂球を 2.9 km/s で衝突させた際の動 画から得られた連続画像を示す. 飛翔体は衝突後, ターゲット内を貫入していき, 衝突から 40 μ s が 経過したとき, 飛翔体貫入の停止が確認された. このときの画像から得られた最終的な貫入深さは 39.9 mm であった. 得られた貫入深さ Pc は以下に 示す貫入方程式¹⁾を用いて規格化された.

$$Pc = C \times d_p \times \rho_p^{0.73} \times v_p^{0.67}$$
 (C は定数) (1)

Fig.2 に貫入方程式により規格化貫入深さと衝 突速度の関係を示す.式(1)より,一般に,衝突速 度が大きいほど,貫入深さも大きくなる.しかし **Fig.2** に示すように, WC, ZrO₂, Al₂O₃, Glass で は衝突速度が 3 ~ 4 km/s 前後で貫入深さが著しく 減少していることがわかる.

Fig.3 に ZrO₂球を 3.8 km/s で衝突させた際の動 画から得られた連続画像を示す.飛翔体は衝突後, ターゲット内を貫入していくが,衝突から 4µs が 経過したとき,飛翔体の先端形状が変化し,飛翔 体が破壊したことが確認された.破壊した飛翔体 は破片となり,それらが時間経過に伴いターゲッ ト内を貫入していく.衝突から 25µs が経過した とき飛翔体貫入の停止が確認され,最終的な貫入 深さは 23.6 mm であった.このように衝突速度の 増加に伴い,飛翔体破壊が生じた際,投影面積が 増加し,貫入抵抗が増加することで貫入深さは減 少すると考えられる.これは脆性材料に特徴的な 現象であると考えられる.

Fig.1 Successive pictures of an impact of a ZrO₂ projectile, at 2.9 km/s.

Fig.2 Relationship between normalized penetration depth and impact.

Fig.3 Successive pictures of an impact of a ZrO₂ projectile, at 3.8/ km/s.

4. 考察

保井らは多孔質石こうへの超高速衝突実験を行い,飛翔体の抵抗係数 C_dを求めている²⁾. 超音速において,飛翔体の減速を表す運動方程式は以下の式で表される.

$$dv/dt = -\alpha v^2 \qquad (\alpha = \pi C_d \rho_t r_p^2 / 2m_p)$$
(2)

ここで v:は貫入速度, ρ_t は ターゲット密度, r_p は飛翔体半径, m_p は飛翔体質量, v_i は衝突速度, t は 衝突からの時間である.式(2)を積分すること により時刻 t における貫入深さ d(t)を求めること ができ,以下の式で表される.

$$d(t) = 1/\alpha \times \ln(v_i \alpha t + 1)$$
(3)

保井らは超高速衝突実験によって得られた X 線画 像から飛翔体の貫入挙動を測定し、それに対し式 (3)をフィッティングすることで C_d の値を求めた. SUS 球を 2 km/s で衝突させたとき、 $C_d = 0.9$ 、6 km/sで衝突させたとき、 $C_d = 2.3 \sim 3.5$ となってお り、衝突速度の増加により抵抗係数は 2 ~ 4 倍大 きくなっている.保井らはこれを飛翔体の変形や 破壊によるものと示唆している.

本研究においても同様にして抵抗係数を求めた. Fig. 4 に ZrO₂ 球を 2.9 km/s, 3.8 km/s で衝突させた 際の貫入挙動(実線),及びそれらに対し式(3)を フィッティングした結果(破線)を示す.これら の実験条件に対する Cd を求めると 2.9 km/s では 0.9, 3.8 km/s では 1.8 となり, 飛翔体破壊に伴い Cd が約2倍大きくなった. Table 1 にすべての実 験条件に対して C_dを求めた結果をまとめる. Table 1 より脆性材料における C_d は飛翔体破壊前 後で大きく変化し,飛翔体破壊前で C_d≒1.0,飛 翔体破壊後で C_d≒2.0 となることが明らかになっ た. また, 延性材料における C_d は衝突速度に伴 い徐々に増加していることがわかる. これは延性 材料の変形によるものと考えらる. SUS 球が破壊 した際の C_dは約 2.1 であり,これは脆性材料を用 いた際の値とよく一致した. AI は衝突により融点 に達すると考えられ,他の飛翔体材料よりも C_d が大きくなっている.

Fig.2 において,実験結果に対して式(1)をフィ ッティングすると,飛翔体が破壊したした際の貫 入深さ(図中黒枠)は式(1)で示される貫入方程式と よく一致するということがわかる.これらの飛翔 体における C_dは飛翔体材料によらず約 2.0 とする ことができ飛翔体損傷の程度が同じであるとき, すなわち,抵抗係数が一定であるとできるとき, 飛翔体の貫入深さは貫入方程式により一般化でき ると考えられる.したがって,抵抗係数によって 貫入方程式を変化させることにより広い速度域に おける貫入深さは一般化できると示唆された.

5. 結論

ポリカーボネイトへの球形飛翔体超高速衝突実 験を行い,以下の知見を得た.

(1)飛翔体損傷は貫入深さに影響を与える.これは 飛翔体が破壊すると投影面積増加に伴い貫入抵抗 が増加するため、貫入深さは減少すると考えられ、 脆性材料に顕著である.

(2)抵抗係数 C_d は飛翔体破壊前では約 1.0, 破壊後 では約 2.0 である. 脆性材料では飛翔体破壊前後 で C_d が大きく変化する. 延性材料では衝突速度 に伴い C_d は徐々に大きくなる

(3)飛翔体破壊後(C_d≒2.0)の貫入深さは貫入方 程式によって表された.抵抗係数によって貫入方 程式を変化させることで貫入深さを一般化できる ことが示唆された.

参考文献

1) N. Kawai et al, International Journal of Impact Engineering, 38 (2011), 542-545

2) M. Yasui et al, Icarus, 221 (2012) 646-657

Projectile material	Impact velocity [km/s]	Projectile condition	Drag Coefficient
WC	1.0	original	0.8
	1.7	original	1.0
	2.2	split in some piece	1.1
	2.5	split in some piece	1.0
	3.2	split in some piece	1.0
	3.5	split in some piece	1.1
	4.2	fracture	2.2
SUS	0.9	original	1.4
	2.2	deformation	1.7
	2.3	deformation	1.7
	3.3	deformation	2.1
	5.1	fracture	2.2
ZrO ₂	1.0	original	0.9
	2.9	original	0.9
	3.8	fracture	1.8
	5.0	fracture	1.9
	5.9	fracture	2.1
Al ₂ O ₃	1.0	original	1.3
	1.9	original	1.1
	3.0	original	0.9
	3.3	original	1.0
	4.1	fracture	1.7
	4.3	fracture	1.8
	6.2	fracture	2.2
glass	1.0	original	1.2
	1.9	original	1.1
	2.9	fracture	1.7
	6.3	fracture	2.0
Al	1.9	deformation	1.8
	3.1	fracture	2.4
	5.2	fracture	2.4
	6.2	fracture	2.4

Table 1 Projectile condition and drag coefficient for each experimental condition.