ISS 内における宇宙放射線線量計測用・位置有感生体組織等価物質 比例計数箱(PS-TEPC)の開発

慶大医/JAXA	寺沢和洋				
KEK	佐々木慎一、俵裕子、齋藤究、高橋一智、岸本祐二				
JAXA	松本晴久、込山立人、永松愛子、布施哲人、勝田真登				
神戸大	身内賢太朗				
京大	谷森達、窪秀利				
放医研	北村尚				

Development of Position Sensitive Tissue Equivalent Proportional Chamber (PS-TEPC) for Space Dosimetry on board the International Space Station

Kazuhiro Terasawa^{1,2}, Tetsuhito Fuse², Masato Katsuta², Yuji Kishimoto³, Hisashi Kitamura⁶, Tatsuto Komiyama², Hidetoshi Kubo⁵, Haruhisa Matsumoto², Kentaro Miuchi⁴, Aiko Nagamatsu², Kiwamu Saito³, Shin-ichi Sasaki³, Kazutoshi Takahashi³, Toru Tanimori⁵, Hiroko Tawara³

¹ School of Medicine, Keio University, Hiyoshi 4-1-1, Kouhoku-ku, Yokohama, Kanagawa, 223-8521 E-mail: terasawa@z6.keio.jp

² Japan Aerospace Exploration Agency (JAXA), Sengen 2-1-1, Tukuba, Ibaraki, 305-8505

³Radiation Science Center, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba-shi, Ibaraki, 305-0801

⁴ Graduate School of Science, Kobe University, Rokko-dai 1-1, Nada-ku Kobe Hyogo, 657-8501

⁵ Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502

⁶ National Institute for Radiological Sciences (NIRS), Anagawa 4-9-1, Inage-ku, Chiba-shi, Chiba, 263-8555

Abstract: Position-Sensitive Tissue-Equivalent Proportional Chamber (PS-TEPC) has been developed for space dosimetry. The detector establishes position sensitivity and tissue equivalency by 3-dimensional tracking with a gas time projection chamber and using tissue equivalent material. A flight model was manufactured and irradiated with heavy ion beams at HIMAC. The dosimetry onboard the International Space Station (ISS) is planned in the near future.

Key words; Space Dosimetry, Dose Equivalent, LET, PS-TEPC, µ-PIC, TEPC, RRMD-III, HIMAC

1. はじめに

地球周回低軌道上の国際宇宙ステーション (ISS)等での滞在や月・火星への有人飛行の際に は、太陽活動に伴う変化や地磁気圏内外の環境の違 いはあっても、地上において自然界や人体・建物・ 食品等から受ける線量より 2 桁高いレベルを被曝 することがこれまでの測定で明らかになっている。

宇宙滞在期間を決定する要因の一つが宇宙放射 線被曝であり、ISS上などでの数か月にわたる長期 滞在の際には、地上での職業人に適用されている 被曝線量限度(50mSv/yearかつ、100 mSv/5years) ¹⁾を超えて、年齢と性別に依存した設定がなされて おり、概ね数百 mSv のオーダーである^{2,3)}。

2013 年の改訂³⁾による男性の線量限度を table 1

に示すが、これらはあくまで測定エラーがゼロの 場合の数値であり、実際にはエラーが大きいと実 質的な線量限度は低くなり、宇宙滞在期間に強い 制限を加えることとなる。

月や火星への有人ミッションにおいては宇宙滞 在の長期化は必至で、宇宙飛行士に対する被曝線 量限度に迫るかそれを超えるような状況が想定さ れるため、地上での平常時においてはあまり問題 とならない測定精度が重要となる。

更に月・火星長期滞在時には地球上のような大気 による遮蔽が存在しないので、レゴリス自身等に よる厚いシールドにより被曝を最小限に抑える必 要がある⁴⁾。

仮に、線量率を1mSv/dとし単純計算すれば、46 歳以上男性で宇宙滞在期間は2.7年となるが、table

the enors of measured values (C.E. 77.776)							
Male	Lifetime effective dose equivalent [mSv]*	Errors of measured values $\sigma[\%]$					
[age]		10	30	51	100		
27~30	6.0×10 ²	5.0x10 ²	3.8x10 ²	3.0x10 ²	2.0×10^2		
31~35	7.0×10^{2}	5.8×10 ²	4.4×10 ²	3.5×10^{2}	2.3×10^{2}		
36~40	8.0×10 ²	6.7x10 ²	5.0x10 ²	4.0x10 ²	2.7x10 ²		
41~45	9.5×10 ²	7.9x10 ²	5.9X10 ²	4.7×10 ²	3.2x10 ²		
46 ≦	10 ×10 ²	1.0×10^{2}	6.3 x 10 ²	5.0×10 ²	3.3×10 ²		

Table 1Net lifetime effective dose equivalent considering
the errors of measured values (C.L. 97.7 %)

中の各エラーの値(10、30、51、100)を想定する と、2.3、1.7、1.4、0.9 年となり、半分程度になる 可能性もあり⁵⁾、現状で 30%以内が推奨されている ⁶⁾。

線量測定の対象となる宇宙放射線の種類の内訳 はかつてのスペース・シャトル STS-89 における Real-time Radiation Monitoring Device-III (RRMD-III) ⁷⁾と Bonner Ball Neutron Detector (BBND)⁸⁾での実測 で、荷電粒子が 8 割、中性子が 2 割となっている が、中性子は 2 次中性子が主で、周辺の物質量に 依存するほか、測定精度が荷電粒子より劣るため、 注意が必要である。

これまで Tissue Equivalent Proportional Counter (TEPC)⁹⁾や RRMD-III 等の能動型検出器で線量の 実測が行われてきたが、中性子への感度、荷電粒 子に対する測定精度を考慮することで、両線量計 の特徴を生かし、生体組織等価性と位置有感性を 兼ね備えた新たな線量計として、Position-Sensitive Tissue-Equivalent Proportional Chamber (PS-TEPC)の 開発に踏み切った¹⁰。

2. PS-TEPC について

PS-TEPC の検出部は、ガス Time Projection Chamber (TPC)で構成されている。米 NASA が標準 検出器として採用している TEPC では位置情報が 得られず、幾何学的な原理的系統誤差が大きい (51%)。その点を解消するための手段として、3 次元的な飛跡を観測することで位置検出を行い、 付与エネルギーについての情報と併せて、線量測 定に必要な物理量である Linear Energy Transfer (LET)を近似計算することなく実測している。測定 対象となる LET 範囲は、0.2~1000 keV/µm-water で ある。

2 次元位置検出部には、Micro-PIxel Chamber (µ-PIC)¹¹⁾というストリップ電極の一種を使用して いる。 検出部の有効体積を形成するドリフト領域を決 定するためのドリフト面、電場整形リングの各電 極を導電性の生体組織等価プラスティック、検出 媒体としてのガスとして生体組織等価ガスを使用 することで、検出器全体として生体組織等価性を 担保している。ガスにはプロパンベースとメタン ベースの2種類があるが、ガスの安定性やドリフ ト電子の移動度を考慮し、メタンベース(CH₄: 64.4%、CO₂: 32.4%、N₂: 3.2%)を最終的に使用する ことに決定している。

3. これまでの結果と今後について

大型タイプ(有効領域が10 cm × 10 cm × 10 cm) による重イオン照射試験による動作実証にはじま り¹²⁾、その後、小型試作機による実証を行い^{13,14)}、 測定精度について、LET全体に対して、 $\sigma = 30\%$ 以 下を達成できる見込みとなった。続いて、検出部 のみについて Bread Board Model (BBM)の製作し、 重イオン照射試験を行い、これまでのプロトタイ プ品と同等の測定精度を達成した¹⁵⁾。

更に、検出部と制御部の両方について、Flight Model (FM)の製作を行い、最初の照射実験を行った。

Fig.1 Photo of the PS-TEPC (flight model). The system consists of two detection parts (left, black color) and a control part (right, silver color). The cylindrical parts of the detection parts are the detection volumes of the PS-TEPC.

Fig.2 Reconstructed 3-dimensional tracks observed by the flight model. Irradiated particles are 56 Fe ions with the energies of 500 MeV/n.

Fig.1 に FM の写真を示す。左側の円筒部と直方 体部が検出部で、円筒部がガス領域となっている。 右側が制御部である。

Fig. 2 に放射線医学総合研究所 HIMAC から供給 された ⁵⁶Fe ビーム (500 MeV/n) 照射によって観測 された 3 次元飛跡を示す。有効体積のサイズは、 2.5 cm × 2.5 cm × 5 cm である。

概ね良好な結果を得ているが、一部ソフトの改修 やハードの交換等を行い、現在、照射試験を継続 中である。

今後は各環境試験等も行い、来年度以降に ISS 上にて、軌道上での実証実験を計画している。

参照文献

- ICRP Publication 60; Recommendations of the International Commission on Radiological Protection,. Pergamon Press, New York, Ann. ICRP 21 (1991).
- 宇宙開発事業団;有人サポート委員会宇宙放射線被 曝管理分科会報告書,平成13年.
- JAXA、国際宇宙ステーション搭乗宇宙飛行士・放 射線被ばく管理規定、ISS 搭乗宇宙飛行士の生涯実 効線量制限値 (2013).
- 4) Terasawa, K. et al.; Development of Position Sensitive Tissue Equivalent Proportional Counter (PS-TEPC) and establishment of dosimetric technique in the International Space Station (ISS) with PS-TEPC, *SUR*, 24, 322 (2008).
- Terasawa, K. et al.; Development of Position Sensitive Tissue Equivalent Proportional Counter (PS-TEPC) for Space Dosimetry, *SUR*, 25, 57 (2009).
- NCRP Report No.142, Recommendations of the National Council on Radiation Protection and Measurements, (2002).
- Doke, T et al.; Measurements of LET-distribution, dose equivalent and quality factor with the RRMD-III on the Space Shuttle Mission STS-84, -89 and-91, *Radiat. Meas.*, 33, 373 (2001).
- Matsumoto, H. et al.; Real-time measurement of low-energy-range neutron spectra on board the space shuttle STS-89 (S/MM-8), *Radiat. Meas.*, 33, 321

(2001).

- Badhwar, G.D. et al.; Measurements on the shuttle of the LET spectra of galactic cosmic radiation and comparison wih the radiation transport model, *Radiat. Meas.*, 139, 344 (1994).
- Terasawa, K. et al.; Position-sensitive tissue-equivalent proportional counter (PS-TEPC) for space dosimetry, *KEK Proc.* 2005-12, 63 (2005).
- Ochi, A. et al.; A new design of the gaseous imaging detector: Micro Pixel Chamber, *Nucl. Instr. and Meths.*, A471, 264 (2001).
- Nagayoshi, T. et al.; Response of a micro pixel chamber to heavy ions with the energy of several hundreds of MeV/n, *Nucl. Instr. Meth.*, A581, 110 (2007).
- Terasawa, K. et al., Response of a prototype position-sensitive tissue equivalent proportional chamber to heavy ions with energies of several hundreds of MeV/n, *KEK Proc.*, 2011-8, 189 (2011).
- Kishimoto, Y. et al.; Basic performance of a position-sensitive tissue-equivalent proportional chamber (PS-TEPC), *Nucl. Instr. Meth.*, A732, 591(2013).
- 15) Terasawa, K. et al.; Response of a position-sensitive tissue equivalent proportional counter to heavy ions, 2014 Annual report of the research project with heavy ions at NIRS-HIMAC (2015).

謝辞

以下の各機関・施設におけます研究課題として採 択され研究が実施されていますのでここに感謝申 し上げます.

- 宇宙航空研究開発機構,(財)日本宇宙フォー ラムが推進している「宇宙環境利用に関する地 上研究公募」プロジェクトの一環として行って おりました実験研究の継続版
- 放射線医学総合研究所・ HIMAC 施設共同利用研究課題
- 高エネルギー加速器研究機構・共同開発研究課題
- 宇宙航空研究開発機構・宇宙環境利用科学委員会・研究/調査グループ