凝固 WG 活動報告

奥谷 猛¹、永井秀明²、間宮幹人²、後藤 孝³、塗溶³、李国軍³

横浜国立大学大学院環境情報研究院¹、産業技術総合研究所²、東北大学金属材料研究所³

Report of the Research Working Group on Solidification

Takeshi Okutani¹, Hideaki Nagai², Mikito Mamiya², Takashi Goto³, Tu Rong³ and Li Guojun³ ¹Graduate School of Environment & Information Sciences, Yokohama National Univ., ²National Institute of Advanced Industrial Science and Technology, ³Institute of Materials Science, Tohoku Univ.

E-Mail: okutani@ynu.ac.jp

Abstract: The research working group on solidification was established for researching the behavior of the process of phase formation, the supercooling and the stability in microgravity for eutectic melts and the possibility for the synthesis of new eutectic mixtures with unique microstructure. In 2006, we report the results of the preliminary experiments for $BaTi_2O_5$ - $Ba_6Ti_{17}O_{40}$ that has excellent dielectric properties.

Key words; Solidification, Eutectic mixture, Microstructure, Microgravity

1. はじめに

共晶組成にある二種以上の混合物の融体を冷却 していくとき、共晶組成にある各成分が凝固により 同時に晶出する。共晶の微細構造は各成分の表面張 力、熱伝導度、凝固速度、相溶性、各成分の凝固点 より低い共晶点での熱運動の低下に由来する分子 間力などの影響を受けると考えられる。微小重力環 境下では過冷却による凝固速度が大きく、表面張力 などの微小な力の作用が顕著に現れる環境で、通常 の常重力下と比べ、共晶の微細構造や特性に影響を 与えると考えられる。本 WG は、微小重力環境利用 が有望な共晶系混合物の事例を抽出し、微小重力実 験を行うことによりその有用性を明らかにするこ とを目的に設立された。ここでは、討議の結果、優 れた誘電特性が期待される BaTi₂O₅-Ba₆Ti₁₇O₄₀を取 り上げ、微小重力実験を行ったので報告する。

2. BaTi₂O₅強誘電体セラミックス

BaO-TiO₂ 系化合物は格子が歪んだ構造で、種々の誘電体材料として利用されている。特に、BaTiO₃ は優れた強誘電特性を持つためにコンデンサーや アクチュエーターに利用されている。BaO-TiO₂ 系 の BaTiO₃ 以外の化合物である BaTi₄O₉、Ba₂Ti₉O₂₀ にも低い誘電損失、マイクロ波領域での高い誘電率 を持つことが知られている。しかしながら、BaTi₂O₅ は誘電体材料として調べられてこなかった。

ごく最近、Y. Akishige ら¹⁾はニードル状の BaTi₂O₅ 単結晶を Ti が過剰に含まれる融液から成長させ、 BaTi₂O₅は強誘電体で単斜晶系の b-軸方向(T_c以下 での空間群は C2)の誘電率が最大値を示すことを 報告した。その値は 430℃で 3MHz で 13,000、75kHz で 30,000 であった。Goto らは、FZ 法によって BaTi₂O₅単結晶を作製し、結晶構造²⁾を明らかにし、 (010)面に垂直な方向の誘電率は高温で Curie-Weiss の法則に従い、748K で 20,500 の最大値を示すこと を報告した。(100)と(001)面に対して垂直方向の誘 電率は各々140 と 70 でほとんど温度の影響はなか った。³¹FZ 法により作製された BaTi₂O₅単結晶は強 誘電体であり、大きな異方性及び優れた誘電率を示 した。しかし、単結晶の成長速度は遅く、20mm/hr で、短時間で大量の単結晶を作製することは困難で あった。

BaTi₂O₅ をゾルゲル法で高純度且つ低温で合成す ることも試みられている。⁴⁾しかし、1100℃で焼成 した BaTi₂O₅ は 450℃で 122、1225℃で焼成した BaTi₂O₅ は 475℃で 130 の誘電率であり、単結晶の b 軸方向の誘電率と同等、c 軸方向の誘電率より 2 桁 も小さい誘電率であった。これは、ゾルゲル法で得 られた BaTi₂O₅ セラミックスは焼結により調製する ので密ではなく、多孔度が誘電率に大きな影響を持 っている。

3. BaTi₂O₅-Ba₆Ti₁₇O₄₀ 共晶セラミックス

FZ 法で調製した BaTi₂O₅ 単結晶は大きな異方性 と優れた特性を持つ強誘電体であるが、単結晶の成 長速度が遅い難点がある。

Goto らは、FZ 法を用いて一方向凝固共晶セラミ ックスの作製を行うと、共晶を構成する物質の相互 作用によってかなり速い成長速度においても二軸 配向することが、 B_4C -Ti B_2 共晶セラミックス⁵およ び B_4C -SiC 共晶セラミックス⁶に関する研究で報告 している。安定状態図⁷では BaO-68.7%TiO₂ 組成は

Fig.1. Phase diagram of BaO-TiO₂ system

BaTiO₃-Ba₆Ti₁₇O₄₀ 共晶となるが、FZ 法の結果から推 測した BaO-TiO₂ 系準安定状態図において、 BaO-68.7%TiO₂ 組成は Fig.1 に示したように BaTi₂O₅-Ba₆Ti₁₇O₄₀ 共晶組成である。そのため、FZ 法を用いて BaO-68.7%TiO₂ 組成試料を一方向凝固 すると BaTi₂O₅-Ba₆Ti₁₇O₄₀ 一方向凝固共晶セラミッ クスを作製することが可能であると考えられる。

出発原料としては炭酸バリウム粉末(純度 99.9%)、酸化チタン粉末(純度 99.9%、粒度 1-2

Fig.2. SEM photographs of the surface perpendiculat to the growth direction of eutectic (a) and the surface parallel to the growth direction of eutectic (b).

Fig.3. Relationship of crystalline orientation of the surface parallel to the growth direction of eutectic (a) and the surface perpendicular to the growth direction of eutectic (b).

 μ m)とした。使用前には、これらを 300℃に保持 したオーブン中に保管することにより試料に吸着 した水分を取り除いた。これらの粉末を BaO-68.7%TiO₂となるように秤量し、乳鉢を用いて エタノールとともに湿式混合を行い、内径 10mm ラ テックス製チューブに詰め9.8 MPaの圧力で静水圧 プレスし棒状に成形した。成形体を電気炉中で1443 K、12h焼結を行った。こうして得た焼結棒を原料 棒としてFZ法によってBaTi₂O₅-Ba₆Ti₁₇O₄₀一方向凝 固共晶セラミックスの作製を行った。成長速度は 50-100 mm/h で行った。雰囲気ガスはAr-21%O₂を 用いた。ここで述べた方法で調製した BaTi₂O₅-Ba₆Ti₁₇O₄₀一方向凝固共晶セラミックスに ついて XRD、SEM、Pole figure 測定を行った。

Figure 2 に(a) 共晶試料の成長方向に垂直な面の SEM 写真、(b) 共晶試料の成長方向に平行な面の SEM 写真を示した。XRD の結果より、BaTi₂O₅ と Ba₆Ti₁₇O₄₀ はともに単斜晶で、SEM 写真の灰色部分 は BaTi₂O₅、黒色部分は Ba₆Ti₁₇O₄₀ であった。SEM の結果より、FZ 法により BaTi₂O₅-Ba₆Ti₁₇O₄₀一方向

Fig.4. Temperature dependence of permittivity of $BaTi_2O_5$ perpendicular to (020) plane in the $BaTi_2O_5$ - $Ba_6Ti_{17}O_{40}$ unidirectional solidified eutectic.

凝固共晶セラミックスを作製することが可能であることが明らかになった。

Figure 3 に極点 XRD パターンから求めた 2 つの 物質の方位関係を示した。左図が成長方向に平行な 面、右図が成長方向に垂直な面における方位関係を 示している。BaTi₂O₅の(001)と Ba₆Ti₁₇O₄₀の(010)は 平行であった。また、成長方向に対して BaTi₂O₅の b 軸が一致し、Ba₆Ti₁₇O₄₀の c 軸がわずかに 1.28[°] 傾 いていることを確認した。一般的に共晶を構成する 物質が面間隔に整合性を持って成長する場合は相 間の密着性がよいと言われる。これらの方位関係を とる原因については共晶を構成する BaTi₂O₅ と Ba₆Ti₁₇O₄₀の単位胞同士の整合性が良いためである と考えられる。

BaTi₂O₅の(020)に垂直な方向、すなわち成長方向 に垂直な方向が誘電率の強誘電性を示すことが確 認されている。そこで BaTi₂O₅-Ba₆Ti₁₇O₄₀一方向凝 固共晶セラミックス中の BaTi₂O₅の(020)に垂直な 方向について交流インピーダンス測定を行うため に、成長方向に対し垂直に切り出し、切り出した面 に金電極を接着し測定を行った。こうして測定した 成長方向の誘電率の温度依存性を Fig.4 に示してい る。BaTi₂O₅-Ba₆Ti₁₇O₄₀一方向凝固共晶セラミックス は BaTi₂O₅単結晶と同様に、約750 K において大き な誘電率のピークを示し、その最大値は測定周波数 1 kHz のとき 20000 を超え、100 kHz のとき 13000 と大きな周波数依存性を示した。BaTi₂O₅ 単結晶に比べ

Fig.5. 10m drop tower and unidirectional solidification apparatus.

Fig.6. Cooling profile of $BaTi_2O_5 + Ba_6Ti_{17}O_{40}$ melts in microgravity and normal gravity.

て、その最大値は小さくなった。しかし、 $BaTiO_3$ 単結晶よりも高い誘電率を示し、 $BaTi_2O_5$ の特性の 高さを表していた。

4. 微小重力下急速一方向凝固による BaTi₂O₅-Ba₆Ti₁₇O₄₀共晶セラミックス

BaTi₂O₅ は強誘電体、Ba₆Ti₁₇O₄₀ は誘電体である。 FZ 法による共晶の作製では、冷却方向に BaTi₂O₅ は b 軸方向に、Ba₆Ti₁₇O₄₀ はわずかに傾いている c 軸方向に成長することがわかった。微小重力下では 均質な融液を冷却凝固した場合、BaTi₂O₅ と Ba₆Ti₁₇O₄₀ はより均質に分布した組織になることが 考えられる。微細な分布になると BaTi₂O₅ 強誘電体 の強誘電分域(ドメイン)ができ、電場を逆にした 場合、逆方向の誘電分極を持つ分域の核が発生し分 域壁の移動が起こる。この場合、自発分極が大きい ので電気ひずみで結晶が変形して光学的異方性を 生じるようになる。予備実験として、 BaTi₂O₅-Ba₆Ti₁₇O₄₀ 共晶組成の試料をFig.5 に示した 10^{-3} g1.43 秒の微小重力環境が得られる 10m 落下塔 を用いて行った。

Fig.7. OM photographs of the surface perpendiculat and parallel to the solidification direction of eutectic solidified in μg and 1g.

凝固の出発試料は前章で述べた FZ 法で用いたの

と同じ試料を用いた。出発焼結試料を約 2mm 径の 粒 1g を径 10mm 長さ 200mm の石英反応管に充填し、 空気中で 1520℃に加熱溶融し、同時に落下、石英 管底部を銅板に接触させ、一方向凝固を行った。 Fig.6 に冷却曲線を示した。

Figure 7 には $BaTi_2O_5$ - $Ba_6Ti_{17}O_{40}$ 共晶組成の試料 の微小重力下及び常重力下での凝固方向に対し垂 直な面と平行な面の組織を示した。微小重力下で凝 固した試料の方がより均一に分散していることが わかる。しかしながら、凝固方向に対し平行な面の 組織では凝固方向への配向はみられなかった。共晶 の成長速度は 50~100mm/h であり、微小重力実験 では試料を室温の銅板に接触させるために急速に 冷却するので、 $BaTi_2O_5 \ge Ba_6Ti_{17}O_{40}$ が単結晶とし て成長はできない。このため凝固方向へ配向する時 間の余裕がなく、結果としてランダムな組織が得ら れたものと考えられた。

5. まとめと今後の方針

BaTi₂O₅-Ba₆Ti₁₇O₄₀ 共晶が異方性を持ち誘電特性 に優れた新規強誘電体であることがわかった。微小 重力実験は 1.43 秒と短いために微小重力環境終了 時の温度は 1445℃で Fig.1の相図によれば微小重力 環境中の試料は融液のままである。また、冷却(凝 固)速度が大きく、結晶成長に必要な時間ではなく、 その結果、FZ 法による凝固物のように凝固方向に 棒状の Ba₆Ti₁₇O₄₀ が並んだ組織や結晶異方性も認め られなかった。長時間の微小重力環境下での実験、 もしくは対流を抑制した状態での長時間の一方向 凝固など、結晶成長の実験が必要である。

参考文献

1) Y. Akashige, K. Fukano, and H. Shigematsu, Jpn. Appl. Phys., Part 2, <u>42</u>, L946(2003).

2) T. Kimura, T. Goto, H. Yamane, H. Iwata, T. Kajiwara, and T. Akashi, Acta Crystallogr., Sect. C: Cryst. Struc. Commun. <u>C59</u>, 1128(2003).

3) T. Akashi, H. Iwata, and T. Goto, Mater. Trans., JIM, <u>44</u>, 802(2003); <u>44</u>, 1644(2003).

4) H. Bertrán, B. Gómez, N. Masó, E. Cordoncillo, P. Escribano, and A.R. West, J. Appl. Phys., <u>97</u>, 084104(2005).

5) I. Gunjishima, T, Akashi, and T. Goto, Materials Transaction, <u>43</u>, 1719-1723(2002).

6) I. Gunjishima, T, Akashi, and T. Goto, Materials Transaction, <u>43</u>, 2309-2315(2002).

7) K. W. Kirby, and A. Wechsler, J. Am. Ceram. Soc., <u>74</u>, 1841-1847(1991).