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Abstract: It is essential to develop gas-liquid two-phase flow (gas-liquid concurrent flow)
modeling not only for improved heat transfer efficiency in territorial energy plants but also for the
design of fuel pipe flows and heat control lines in spacecraft. Many experimental and theoretical
efforts have been devoted to achieving a two-fluid model, which is one of the most popular
models for industrial use. Such a model consists of individual mass, momentum, and energy
conservation equations for two-phase flow, using an accurate description of the interfacial area
transport or interfacial area concentration and the drive force acting on the gas-liquid interface. In
this research, a basic database was obtained by measuring interfacial area transport under micro-
and normal-gravity environments, using the drop-shaft in the Micro-Gravity Laboratory of Japan
(MGLAB). The database showed the proposed model accurately predicted the relative velocity
between bubble and liquid flow in the channel even in micro-gravity condition, and the estimated
weight caused by the frictional pressure loss should be taken into account in the interfacial area
transport and drift velocity.
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Fig. 4 Axial development of flow parameters (Re;= 6520 6560)
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Fig. 5 Comparison of drift-flux models with
present experimental data (pu-g)
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