微粒子プラズマ実験と臨界現象

京都工芸繊維大学¹、岡山大学²、東北大学³、九州大学⁴、名城大学⁵、横浜国立大学⁶、 静岡大学⁷、京都大学⁸、JAXA⁹ 林康明¹、東辻浩夫²、佐藤徳芳³、渡辺征夫⁴、上村鉄雄⁵、石原修⁶、飯塚哲³、三重野哲⁷、 高橋和生⁸、白谷正治⁴、依田眞一⁹、足立聡⁹、高柳昌弘⁹

Experiments on Fine Particle Plasmas and Critical Phenomena

Yasukai Hayashi¹, Hiroo Totsuji², Noriyoshi Sato³, Yukio Watanabe⁴, Tetuso Kamimura⁵, Osamu Ishihara⁶, Satoru Iizuka³, Tetsu Mieno⁷, Kazuo Takahashi⁸, Masaharu Shiratani⁴, Shinichi Yoda⁹, Satoshi Adachi⁹, Masahiro Takayanagi⁹ Kyoto Inst. Technol.¹, Okayama Univ.², Tohoku Univ.³, Kyushu Univ.⁴, Meijo Univ.⁵, Yokohama Nat. Uvi.⁶, Sizuoka Univ.⁷,Kyoto Univ.⁸, JAXA⁹ E-Mail: hayashi@dj.kit.ac.jp

Abstract: Study on fine particles plasmas is related to a variety of fields of research. Fine particle plasma is a kind of strongly coupled plasma and is predicted to take the critical phenomenon. Such a kind of interesting experiment is now planning to be performed under microgravity condition by the collaboration between German and Japanese research groups.

微粒子プラズマ研究と微小重力実験

微粒子プラズマの研究は、古くは惑星の成因と 関連して宇宙プラズマの分野で取り上げられてき たが、十数年ほど前から半導体材料のプラズマプ ロセスにおけるダスト発生の問題と関わって大き く広がった。さらに1994年には微粒子がプラ ズマ中で結晶状に整列する、"クーロン結晶"の 現象が世界の3ヶ所(日本、ドイツ、台湾)で同 時に実験的に発見され¹⁻³⁾、さらなる展開がなさ れてきている。ドイツのグループは、微粒子プラ ズマ・クーロン結晶の実験を早いうちから微小重 力実験として計画し、ロシアと連携して ISS など を利用した実験を実施している。一方で、トピカ ルチーム: IMPACT (IMPF-ICAPS)を形成して ESA における ISS 利用も目指している。

日本でも、数年前より微粒子プラズマ研究が地 上研究公募に採択され、落下実験施設や航空機を 利用した微小重力実験が、東北大学、静岡大学、 京都工芸繊維大学、九州大学において実施された。

微粒子プラズマ・クーロン結晶は、格子定数が 数百μmと大きく、肉眼でも結晶が観察できるほ どである。このため、実際の結晶における様々な 物理現象を解明する手段として利用することが期 待される。しかしそのためには、まず等方的な力 の場の中で結晶を形成する必要がある。地上では、 重力の影響を受けて特殊な構造の結晶が形成され る場合が多い。そこで微小重力実験が提案された ⁴⁾。しかし重力の小さい条件下では、今度はイオ ン粘性力の影響が顕著に現れ、微粒子はプラズマ 周辺部に押しやられ、中心部にはボイドが形成さ れる(Fig.1)。そこで、プラズマを外側から生成 すると、内部へ向かうイオン流と共に微粒子を中 心部に捕捉できることがわかった⁵⁾。この方法を 発展させて、結晶構造には至らないものの、殻構 造が形成されることが報告されている⁶⁾。

Fig.1 Fine particle plasma forming a void.

微粒子プラズマにおける凝集力

ところで、微粒子プラズマは強結合プラズマの ーつとして捉えることができる。強結合プラズマ とは、帯電した粒子群が反対符号の(空間的に一 様に塗りつぶした)背景電荷の中に存在する一成 分プラズマにおいて、粒子間の平均クーロンエネ ルギーが熱運動エネルギーを上回って粒子間に相 関が生じ液体の状態となったものを言う。クーロ ンエネルギーがさらに大きくなり一定の値を上回 ると、固体(結晶)の状態に相転移する。

プラズマ中で微粒子の表面には電子が付着する ため、微粒子は負電荷を有する荷電粒子のように 振舞う。粒径がミクロンオーダーの微粒子の場合、 低気圧グロー放電プラズマ中では数千~数万個の 負電荷を有する。したがって、微粒子間の平均ク ーロンエネルギーは極めて大きく、容易に強結合 プラズマとなり得、クーロン結晶も形成される。 プラズマ中の電子の多くが微粒子に付着している 場合を考えると、周辺の正イオンと電子の密度の 不均衡のため背景の電荷は正とみなすことができ る。これは、電荷の符号は逆となるが、正イオン が電子の海の凝集力で配列する金属結晶と同様の 状態と考えることができる。実際に微粒子プラズ マにおいて、fcc や bcc に近い構造が形成されるこ とも確認されている^{7,8} (Fig.2)。

このように微粒子プラズマでは、負帯電した微 粒子とは反対の正符号の背景電荷が存在し、それ が凝集力となって結晶が形成される^{9,10)}。この ような理由から、実際の気体・液体・固体の系と 同様の物理現象を観測することが期待される。そ の一つとして、臨界現象観測の可能性が指摘され ている^{11,12)}。

Fig.2 Fine particle Coulomb crystals.

微粒子プラズマにおける臨界現象

強結合プラズマでも、背景が縮退した電子系の 場合は背景電荷による圧力は大きい。また、固定 された電場の中にトラップされたイオンの結晶で は、背景電荷の変形はない。このため、こうした 系では臨界現象は観測されない。しかし微粒子プ ラズマの場合は、背景電荷の変形が可能であり、 その圧力も小さいので、圧縮率の発散に伴う現象 の観測が可能となる。つまり微粒子プラズマの背 景は古典プラズマであり、また個々の微粒子の帯 電量が極めて大きいので、臨界現象の観測が可能 となると予測される。 一方、日本の動向に触発されたドイツのマック スプランク研究所のグループより、微粒子間引力 の存在を示す理論に基づいた計算から微粒子プラ ズマにおける臨界現象観測の可能性が指摘され、 発表された¹³⁾。

ドイツ・マックスプランク研究所ではロシアと 連携して、ロシア側の ISS において微小重力実験 が行える態勢にあり、現在、PK3+と呼ばれるプラ ズマ実験設備を有している。この装置を用いた実 験として、日本側から提案している臨界現象実験 の実施を積極的に受け入れる構えを示しており、 これまで、日本およびドイツにおいて関連した話 し合いを持ってきた。今後、できる限り多くの機 会を設け、実験の詳細を固めていく予定である。 さらにPK4および IMPACT における実験も計画さ れており、本共同実験の長期的取り組みも検討し ている。

参照文献

- Y. Hayashi and K. Tachibana: *Jpn. J. Appl. Phys.* 33, L804 (1994).
- J. H. Chu and Lin I: *Phys. Rev. Lett.* **72**, 4009 (1994).
- H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann: *Phys. Rev. Lett.* **73**, 652 (1994).
- G.E. Morfill, H. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, *Phys. Rev. Lett.* 83, 1598 (1999).
- 5) 飯塚哲, 佐藤徳芳, *日本物理学会誌*, 58, 821 (2003).
- O. Arp, D. Block, A. Piel, and A. Melzer, *Phys. Rev. Lett.* **93**, 165004 (2004).
- 7) Y. Hayashi, Phys. Rev. Lett. 83, 4764 (1999).
- 8) Y. Hayashi, Physica Scripta. T89, 112 (2001).
- 9) H. Totsuji, T. Ogawa, C. Totsuji, and K. Tsuruta, Phys. Rev. E, **71**, 045401(R) (2005).
- H. Totsuji, T. Ogawa, C. Totsuji, and K. Tsuruta, Phys. Rev. E, 72, 036406 (2005).
- 11) H. Totsuji and S. Ichimaru, Prog. Theor. Phys., 52, 42 (1974)
- 12) 東辻浩夫, *日本マイクログラビティー応用学 会誌*, **22**(1) (2005), 17.
- S. A. Khrapak, et. al., *Phys. Rev. Lett.* 96, 015001 (2006).