火星探査に向けた超軽量熱防御システムの研究

鈴木俊之,藤田和央,青木卓哉,小笠原俊夫 JAXA 研究開発本部

1. はじめに

エアロキャプチャは将来惑星探査ミッションにお ける有効な軌道投入方法として知られており,近年 JAXA においてもその軌道投入技術を火星において 実証することが検討されている.^{1,2)} 火星において エアロキャプチャを実施するにあたり,極超音速揚 力飛行を実現する機体と,空力加熱環境から機体を 守る熱防御システムが必須であるが,推進薬を用い た従来の軌道投入よりもペイロード比を拡大できる ように,熱防御システム重量は十分軽量であること が求められる.

このような背景のもと、近年 JAXA において図1 に示すような非アブレーション軽量熱防御システム (Non-Ablative Lightweight Thermal protection system: NALT)が提案されている. 3) NALT は耐酸 化コーティングを施した C/C 複合材スキンと, 熱伝 導による機体内部への熱の侵入を低減する断熱材, 更に火星大気飛行中に受ける空力荷重を担うハニカ ムサンドイッチパネルから構成される. これまでの ところ, 40mm から 100mm 程度の大きさの試験片 の試作が行われ、加熱試験を行うことにより NALT の耐熱特性を取得するとともに、物性値計測を行う ことにより NALT の熱機械特性評価用モデルの開 発が行われた.また火星エアロキャプチャ飛行軌道 に沿った熱解析を行うことにより、火星エアロキャ プチャを行うにあたり必要になる NALT 重量の推 算が行われた.これによると機械的強度も満足しつ つ様々な温度境界条件を満たすためにはC/Cスキン 厚さ 1.6mm, サンドイッチパネル厚さ 8mm の場合 において断熱材厚さは 46mm 必要であり, その際の NALT 総重量は 36kg, また機体総重量 250kg に占 める NALT 重量は 15%程度になることが判明した. 火星エアロキャプチャを実施するにあたり、ペイロ ード比向上のためには熱防御システム重量の更なる 低減が必須である.上記重量推算の結果では C/C ス キン、断熱材、ハニカムパネルの単位面積当りの重 量はそれぞれ 2.66kg/m2, 8.44kg/m2, 1.78kg/m2 で あり、断熱材の重量が最も重い. 断熱材としては現 在のところ米国製発泡カーボン(Grafoam ®FPA-10, GrafTech International, Ltd.)を用いているが、よ り軽量で熱伝導率の小さな断熱材を使用することで, 断熱性能を改善するとともに NALT 重量の低減が 見込めると思われる.

本研究は、NALTに使用される断熱材素材を見直 し、断熱性能を改善するとともに更に重量を低減す ることを目的とする.本報ではいくつかの低密度断 熱材を用いて NALT を試作することにより、加工性 や取扱いについて検討を行う.また加熱試験を行う ことにより試作した NALT の耐熱基礎特性を取得 し、従来の断熱材の場合と断熱性能を比較する.更 に火星エアロキャプチャに適用した場合を想定し, NALT 重量を推算し、その成立性を検討する.

図 1 非アブレーション軽量熱防御システム(NALT)の概要

2. 新しい断熱材を用いた NALT の試作

本研究で試作した NALT 試験片を図 2 に示す. 図 2(a)は直径 40mm の NALT 試験片を図 2 に示す. 図 2(a)は直径 40mm の NALT 試験片であり, 断熱材に は従来 NALT に用いられてきた米国産断熱材 A(発 泡カーボン)を使用している. 図 2(b)は 100mm 角の NALT 試験片であるが, 使用されている断熱材 B は 断熱材 A と同様に発泡カーボンであるが国産品であ る. 断熱材 A 及び B はともに機械加工性も良いが, C/C 複合材スキン接着後に実施された X 線 CT 検査 において, 図 3 に示すように接着部周辺に細かいひ び割れが発生することが判明している. これは接着 後に加熱硬化を行うが, 断熱材と C/C 複合材スキン の線熱膨張係数が異なるために, 熱処理後の冷却中 に応力が発生しひび割れが生じたと考えられる.

 (a) アーク加熱試験用 φ 40mmNALT 試験片, 断熱 材 A(発泡カーボン)を使用
図 2 本研究において試作した NALT 試験片

図 2(c)は比重 0.18 のカーボンエアロゲルを断熱 材として使用した NALT 供試体であり,使用した 断熱材を便宜上断熱材 C と呼ぶ. 断熱材 C は断熱 材 A, B と異なり固く脆いため加工が難しく,また 塗れ性が良くないため接着剤の塗布が難しい.

(b) 赤外線ランプ加熱試験用 100mm 角 NALT 試 験片, 断熱材 B(発泡カーボン)を使用

(c) 直径 40mm アーク加熱試験用 NALT 試験片,
断熱材として C(カーボンエアロゲル)を使用

(d) 赤外線ランプ加熱試験用 100mm 角 NALT 試 験片,断熱材 D(炭素繊維成形体(0 度積層))を使用

図2 本研究において試作した NALT 試験片

図 3(d)は炭素繊維成形体を断熱材として使用した NALT 供試体であり,使用した断熱材を便宜上断熱材 D と呼ぶ. 断熱材 D は炭素繊維を成形したものであ り,積層構造を持つ.本研究ではその積層角度の影 響についても検討を行ったので後に示す.また断熱 材 A 及び B と比べると柔らかく, C/C スキンとの接 着時に熱応力により割れることはない.

図 3 X線 CT による C/C 複合材スキンと断熱材と の接着部健全性評価(断熱材 A)

3. 加熱試験

本研究では試作した NALT 試験片を用いて加熱 試験を行った.加熱試験は JAXA 調布航空宇宙セン ター750kW アーク加熱風洞と, JAXA 調布航空宇宙 センター90kW 赤外線ランプ加熱装置において実施 された.

図4にアーク加熱風洞におけるNALT加熱試験の様 子を示す.アーク風洞における加熱試験では図 2(a)(c)のような直径40mmの試験片がアーク気流中 に投入され,加熱中のNALT試験片の表面温度を放 射温度計で計測した.また図 2(a)(c)に示すように, 断熱材とハニカムパネル界面にK型熱電対を側面か ら艤装し,加熱中と加熱後における温度変化を計測 した.試験片側面からの熱の流入を極力低減するた め,試験片側面は図4に示すような水冷ジャケット で覆われている.試験機体は空気,流量 10g/s,電 流 300A であり,生成された気流のよどみ点加熱率 は 0.95MW/m2 である.また加熱時間は 60 秒間で あり,総加熱量は約57MJ/m2 である.

本研究では断熱材の性能を簡易に比較することを 目的とし,試験片製作上特に時間のかかる SiC コー ティングは実施しないこととした.

NALT 試験片の表面温度の表面温度を図 5 に示す. 図 5 には断熱材 A 及び断熱材 B, 断熱材 D を用いた 結果を示す. 断熱材 D は積層構造を持つため, 積層 方向が気流と直角になる 0deg と, 積層方向が気流 と並行になる 90deg の結果を示している. 断熱材 C(カ-ボンエアロゲル)を用いた加熱試験では,試験後に断熱材と <math>C/Cスキンとの接着界面が剥離してい ることが判明した. そのため断熱材 C を用いて得ら 研究の比較対象からは除外する

図 4 750kW アーク加熱風洞における NALT 加熱 試験の様子

図より,加熱開始後は急激に温度が上昇し,その 後は 2000K に到達した後にほぼ一定の値となって いる. 断熱材 A, 断熱材 B, 断熱材 D(0deg)につい て大きな違いは見られていないが、断熱材 D(90deg) に関しては他と比べて若干温度が低い. これは断熱 材 D(90deg)が気流と並行な方向に積層構造を持つ ため,熱伝導率が高い積層構造を伝わって試験片内 部に熱が早く伝わることにより表面温度を下げるた めと考えられる.

断熱材とハニカムとの接着界面における温度変化を 図 6 に示す. 断熱材 D(90deg)の場合, 他と比べて非 常に温度が高くなった.これは前述した通り熱伝導 率の高い積層構造に沿って熱が流入したためである. 実機に断熱材 D を適用する際には,特に局率の大き な部位について断熱材の積層方向に注意する必要が ある.また図6によると、断熱材Bについては従来 品である断熱材Aと結果が大きく変わることはない が、断熱材 D(0deg)については断熱材 A に比べて最 大温度が約 50K も低く,高い断熱性を示している. これは断熱材 D(0deg)の積層方向が気流に垂直であ

れた試験データは参考値とし、誤解をさけるため本 ることにより気流方向の熱伝導率が小さく、熱伝導 による熱の流入を防いだためと考えられる.

JAXA 調布航空宇宙センター90kW 赤外線ランプ 加熱装置において実施された加熱試験の概要を図 7 に示す. 本試験では図 2(b)(d)に示す 100mm 角の NALT 試験片が赤外線ランプによって加熱される. 試験片側面からの熱入力を極力低減するために、試 験片周囲にはシリカ断熱材が配置されている.本試 験では表面温度,内部温度の時間変化を K 型熱電対 を用いて計測した. ガードンゲージを用いて計測し た平均加熱率は 150kW/m2 であり, 加熱時間 120 秒で総加熱量は18MJ/m2である.

図 6 90kW 赤外線ランプ加熱装置における NALT 加熱試験の様子

断熱材 A 及び D(0deg)を用いた NALT 試験片につ いて得られた表面温度, 断熱材とハニカムパネル界 面における温度,更にハニカムパネル裏面の温度の 時間変化を図8に示す.図8によると、断熱材Aに 比べて断熱材 D(0deg)の表面温度が若干高いものの, 界面温度や裏面温度は逆に低くなっている. これは アーク加熱試験で見られた結果と同様に、断熱材 A に比べて断熱材 D(0deg)は熱を伝えにくく、断熱性 が高いためと考えられる.現在のところ断熱材 D(0deg)の熱伝導率が得られていないため断熱材 A

の熱伝導率との直接の比較が行えていないが、断熱 材 D(0deg)の熱伝導率は断熱材 A に比べて小さいこ とが予想される.

図 8 真空ランプ加熱試験において得られた各部温 度の時間変化

断熱材 D(0deg)を用いて得られた加熱試験結果と 数値解析結果との比較を図9に示す.数値解析につ いては1次元熱伝導方程式を有限差分法を用いて解 いた結果である.解析に当たって必要な物性値は密 度,熱伝導率,比熱であり,断熱材 D(0deg)の熱伝 導率を除いて計測結果を用いた.断熱材 D(0deg)の 熱伝導率については現在不明であるため,断熱材 A の熱伝導率の約0.7倍と仮定した.図9より,表面 温度,界面温度,ハニカムパネル裏面温度ともに加 熱試験結果と数値解析結果との一致は概ね良好であ る.また加熱試験結果から断熱材 D(0deg)の熱伝導 率が断熱材Aの熱伝導率よりも小さいと予測された が、数値解析において断熱材Aの約0.7倍を仮定す ることにより試験結果との一致が得られたことは首 尾一貫している.従って加熱試験の評価解析に用い られたモデルを用いることで、火星におけるNALT の加熱環境を予測することができると思われる.

図 9 断熱材 D(0deg)を用いて得られた加熱試験結 果と数値解析との比較

4. 火星エアロキャプチャを想定した重量推算

加熱試験で使用された評価モデル及び解析手法を 用いて火星エアロキャプチャ軌道に沿った熱解析を 行った.本研究では良い断熱性能を示した断熱材 D(0deg)を使用することを想定した.また C/C スキ ンの厚さを 1.6mm,ハニカムパネルの厚さを 8mm と仮定し,断熱材厚さを変えることによる各部にお ける到達温度評価した.得られた結果を表 1 に示す.

\backslash	CC スキン		断熱材		ハニカムパネル		合計		最大到達温度			合否
Case	厚さ	単位面積 重量	厚さ	単位面積 重量	厚さ	単位面積 重量	単位面積 重量	重量	CC 表面	断熱材/ ハニカム 界面	ハニカム 裏面	O×
	mm	kg/m2	mm	kg/m2	mm	kg/m2	kg/m2	kg	K	K	K	
1	1.600	2.660	26.000	4.160	8.000	1.783	8.603	24.089	1694.261	485.402	460.301	\times
2	1.600	2.660	27.000	4.320	8.000	1.783	8.763	24.537	1694.261	477.346	453.917	\times
3	1.600	2.660	28.000	4.480	8.000	1.783	8.923	24.985	1694.261	469.827	447.907	\times
4	1.600	2.660	29.000	4.640	8.000	1.783	9.083	25.433	1694.261	462.797	442.244	\times
5	1.600	2.660	30.000	4.800	8.000	1.783	9.243	25.881	1694.261	456.217	436.904	\times
6	1.600	2.660	31.000	4.960	8.000	1.783	9.403	26.329	1694.261	450.047	431.864	\times
7	1.600	2.660	32.000	5.120	8.000	1.783	9.563	26.777	1694.261	444.254	427.103	\triangle
8	1.600	2.660	33.000	5.280	8.000	1.783	9.723	27.225	1694.261	438.807	422.600	\triangle
9	1.600	2.660	34.000	5.440	8.000	1.783	9.883	27.673	1694.261	$433.\ 679$	418.337	\triangle
10	1.600	2.660	35.000	5.600	8.000	1.783	10.043	28.121	1694.261	428.844	414.298	\triangle
11	1.600	2.660	36.000	5.760	8.000	1.783	10.203	28.569	1694.261	424.280	410.467	\triangle
12	1.600	2.660	37.000	5.920	8.000	1.783	10.363	29.017	1694.261	419.966	406.831	\triangle
13	1.600	2.660	38.000	6.080	8.000	1.783	10.523	29.465	1694.261	415.883	403.375	\triangle
14	1.600	2.660	39.000	6.240	8.000	1.783	10.683	29.913	1694.261	412.015	400.088	\bigcirc
15	1.600	2.660	40.000	6.400	8.000	1.783	10.843	30.361	1694.261	408.346	396.959	\bigcirc

表1 火星エアロキャプチャ軌道に沿った熱解析結果サマリ

ハニカムパネルの許容温度は 450K であり, この温 度条件を満たす断熱材厚さは 32mm である. またそ の際の NALT 重量は約 27kg である. 一方, ハニカ ムパネル裏面付近に衛星機器を設置するためにはハ ニカムパネル裏面温度を 403K 以下に保つ必要があ る. この温度条件を満たす断熱材厚さは 39mm であ り,その際の NALT 重量は約 30kg(機体重量比 12%) である. 断熱材 A を用いた場合の NALT 重量が約 36kg(機体重量比 14.4%)であったのに対し, 断熱材 D(0deg)を使用することで約 6kg の重量を低減でき ることがわかった.

参考文献

[1] 成田伸一郎:火星エアロキャプチャ技術実 証計画, 3E04,第 56 回宇宙科学技術連合講演 会講演集, 2012 年

[2] 藤田和央:火星エアロキャプチャミッションの基本設計, 3E05, 第 56 回宇宙科学技術連 合講演会講演集, 2012 年

[3] Suzuki, T., et al., "Study of Non-Ablative Lightweight Thermal Protection System for Mars Exploration Mission," AIAA Paper 2012-3009, 43rd AIAA Thermophysics Conference, 25-28 June 2012