A05 自在な着地を可能にする衝撃吸収構造の衝撃応答

中村佳祐(早稲田大学),山田哲哉(JAXA/ISAS),森野美樹(早稲田大学) Keisuke Nakamura (Waseda Univ.), Tetsuya Yamada(JAXA/ISAS), Yoshiki Morino(Waseda Univ.)

1. 背景・目的

火星,木星を超えた遠方天体からのサンプルリ ターンミッションの実現を考えると,その往復に かかる時間が大きいことから,ミッションの最終 段階であるパラシュートによる減速着地の信頼性 が課題となる.そこでパラシュートを用いず,カ プセルのみの空気抵抗による減速の後,平衡速度 で落下衝突しても,搭載機器の健全性を保てる衝 撃吸収構造があれば,パラシュート開傘に用いる 電気回路等のサブシステムを簡略化させることが でき,搭載機器が最小化されることでミッション の信頼性が向上する.さらに,この衝撃吸収構造 はパラシュートのみでは,十分な減速が期待でき ない大気の薄い天体への高速着地にも適用可能な 技術であり,その応用範囲は広い.

本研究は宇宙機の着地に適した衝撃吸収材料と して選定した材料に対して,数十m/sオーダーの高 速衝突試験を行うことによって,衝突時の衝撃応 答を明らかにすることを目的とした.

Fig.1 パラシュートレスカプセル概略図

2. 衝撃吸収材について

宇宙機の衝撃吸収に適した材料の機械的性質と してPlateau応力とエネルギ吸収効率 η の2つの適 切なパラメータが求められる. [1] [2] [3] まず、衝撃吸収材料は搭載機器の制約荷重より も小さい力で潰れる必要があるため、搭載機器の 制約加速度、重量、断面積より、吸収に適した材 料のPlateau応力が求まる。Plateau応力とは、セ ル構造体などの圧縮時に見られる、歪みの増加に 対して応力の変化が小さい領域の応力である。

$$\sigma_{\rm p} < \frac{\rm m}{\rm A} a_{\rm max} \tag{1}$$

但し σ_p :Plateau応力 A:搭載機器断面積 a_{max} :制限加速度 m_0 :機器重量+材料重量

式(1)から衝撃吸収に必要な材料のPlateau応力は 衝突速度に関係なく,mo/Aの大きさと機器の制約 加速度によって求められる.よって,搭載機器の m/Aに合わせてPlateau応力を自由に変えることが できる材料が衝撃吸収構造を設計する上で理想的 である.

次に、衝突速度と衝撃吸収材の厚みの関係を考 える。衝突前の運動エネルギが変形エネルギ以下 でないと吸収しきれないことから、エネルギ保存 則として、

$$\frac{1}{2}m_0 v_0^2 \le V_0 \int_0^{\varepsilon_2} \sigma(\varepsilon) d\varepsilon$$
 (2)

但し vo:衝突速度 Vo:初期材料体積 を満たす必要がある.これを式(1)と組み合わせ て,整理すると下式になる.

$$L = \frac{v_0^2}{2a_{\max}} \frac{\sigma_p}{\int_0^{\varepsilon_2} \sigma d\varepsilon} = \frac{v_0^2}{2a_{\max}} \frac{1}{\eta}$$
(2)

但し L:材料厚み

これより、エネルギ吸収効率ηが大きければ大 きいほど材料の厚みを小さくすることが可能であ る.エネルギ吸収効率ηは一定のPlateau応力で歪 み100%まで潰れる理想的な場合に対して、実際の 応力ひずみ線図でPlateau応力以下の領域の割合で ある. 式(1),(3)を用いて、はやぶさ初号機の再突入カプ セルがm/A=216kg/m²、最大加速度3000Gだった ことを参考に、宇宙機として利用するために求め られる条件を以下に示す.

・数MPaのPlateau応力を持ち、エネルギ吸収効率60%以上である。

・真空劣化,温度依存性が小さく,アウトガス, 固体粉末が発生しない。

・電波透過性を有する.

・大型材料の製造が可能である.

・低密度である.

上記の条件に適合する材料として、本研究では 発泡ウレタン材料を対象として研究を行った.ウ レタン材料の画像をFig.2に示す.押込み試験結果 を図3に示す.ウレタン材料は密度を変えることに より、Plateau応力を1.4-3.2MPa程度で変化させるこ とが可能なので、搭載機器の重量、面積に合わせ て、衝撃吸収構造を自由に設計することができ、 さらに工業化された製品であるため、ばらつきを 管理した上で、大型の材料の製作性もあることが メリットである.但し、ポリウレタンが長期使用 できる温度は一般に80℃とされ、有機化合物であ ることからも真空紫外線環境での劣化などについ ては今後試験を行う必要がある.[4]また、変形時 に粉が発生することも課題である.

Fig.2 発泡ウレタン材料

Fig.3 発泡ウレタン材料 応力ひずみ線図

3. 高速衝突試験

本研究ではJAXA角田宇宙センターのバリスティ ックレンジを用いた高速衝突試験を行った.[5]バ リスティックレンジとは,圧縮空気によりプロジ ェクトタイルを打ち出し事ができる装置である. 金属シェル試験体の内部に衝撃吸収材,加速度セ ンサを搭載し,横向きに打ち出すことで高速衝突 時の加速度計測を行う.本試験は実機のカプセル などに比べて,小さいスケールのものである.こ のスケーリングは前章で示した搭載機器の重量断 面積比m/Aを用いることで,実機と同程度の加速度 が得られるように試験を行う.試験結果の概略図 をFig.4に示す.

本研究では100kg/m³の低密度ウレタン材料を 26.8m/sの速度でターゲットに衝突させた.試験前 後の材料画像をFig.5とFig.6に示す.加速度センサ と錘を材料の中心に接着した状態で衝突試験を行 い,試験後には,錘が実機と同様押込み状態で材 料が潰れていくことが分かる.このとき,約 9.5mm,歪み換算で27%の変形が計測された.

試験結果をFig.7に示す.最大加速度2500Gとし て加速度センサと錘の設計を行ったが、衝突中の 振動により、最大加速度は3733Gとなった.加速 度は1.5-2.0msの間で減少していき、衝突が終了す る結果となった.この結果を次章において数値計 算を用いて考察を行う.

Fig.4 高速衝突試験概略図

Fig.5 試験前の発泡ウレタン材料

Fig.6 試験後の発泡ウレタン材料

Fig.7 発泡ウレタン材料の高速衝突試験結果

4. 高速衝突試験の数値モデル化

将来,実機設計時には,高速衝突試験結果を数 値解析で再現することで効率的な設計が可能であ ることが理想的ではあるが,衝撃吸収材の高速衝 突試験は例が少なく,現状での完全な推算は困難 であると考えられる.そこで,高速衝突時のメカ ニズム解明のために,高速衝突試験をモデル化し た数値解析を行った.

計算モデルをFig.8に示す.ハイスピードカメラ の映像から金属シェルはターゲットに対し,ほぼ 垂直に衝突していることが確認できたので,計算 モデルは1次元で垂直衝突としている.ステンレス 製のシェル部とセンサ部はターゲット材や衝撃吸 収材よりも十分剛性が高いので,剛体として変形 を無視している.衝突後の跳ね返りは無視してお り,ターゲット,衝撃吸収材料は完全塑性材料と している.座標原点は衝突点から十分離れたター ゲットの表面においており,試験結果と正負を合 わせるために減速時の加速度が正になるように定 義している.

Fig.8 高速衝突試験の数値計算モデル

支配方程式方程式を以下に示す.シェルの運動 方程式の運動方程式として下式が成り立つ.この とき, F(y_s)は木材からの反力を表しており,ター ゲット材料は使用した木材の静的押込み試験を行 い,その結果をシェルの外形状に合わせて積分す ることでストロークと力の関係を求め,代入して いる.

$$m_3 \frac{d^2 y_s}{dt^2} = F(y_s) - \sigma_2 A_2$$
 (1)

衝撃吸収材料の運動方程式を次式で表す.材料 の上端と下端でそれぞれ応力σ₁,σ₂を定義しさら に、上端側が面積の小さい押込み状態と面積が上 端と下端で等しい単軸圧縮も計算できるよう面積 をA₁A₂と分けて考えている。

$$m_2 \frac{d^2 y_m}{dt^2} = \sigma_2 A_2 - \sigma_1 A_1$$
 (2)

ペイロードの運動方程式は次式で表す.

$$m_1 \frac{d^2 y_p}{dt^2} = \sigma_1 A_1 \tag{3}$$

さらに、材料の重心位置は変形により変化する ので、材料の重心位置を定義する必要がある。衝 撃吸収材料はセルの座屈により部分的に破壊が進 むが、その影響範囲を見積もることが困難である ため、ここではペイロード下部の全領域が均一に 破壊するものと仮定して立式した。この仮定の場 合、シェルとペイロードの変位から幾何学的に材 料の重心位置が以下のように求まる。

$$\frac{d^2 y_m}{dt^2} = \frac{A_1}{2A_2} \frac{d^2 y_p}{dt^2} + \left(1 - \frac{A_1}{2A_2}\right) \frac{d^2 y_s}{dt^2}$$
(4)

ひずみ量はシェルとペイロードの変位から次式で 表す.

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = \frac{1}{L_{\mathrm{m}}} \left(\frac{\mathrm{d}y_{\mathrm{p}}}{\mathrm{d}t} - \frac{\mathrm{d}y_{\mathrm{s}}}{\mathrm{d}t} \right)$$
(5)

式(1)から(5)を用いて運動解析を行った. センサ 重量:m₁,材料重量:m₂,シェル重量:m₃,断面 積:A₁,A₂,初期速度:v₀,初期材料厚み:Lmを 初期条件として,未知数:y_s,y_p,y_m, σ_1 , σ_2 , ε の6個 に対して,4次のルンゲクッタ法で計算する.

まず,数値解析の妥当性を確認するため,また さらに,今後の高精度な加速度推算を可能にする 要素を確認するために,静的押込み試験結果から 衝突時の加速度推算を行う.Fig.8に数値計算結果 と試験結果を比較したものを示す.0-0.5mの間の 加速度の立ち上がりが一致している.この加速度 の立ち上がり時には,ターゲットの変形が発生し ている.その後,数値解析ではPlateau域で加速度 が一定のまま,1.7ms程度でペイロードが減速して いることが分かる.高速衝突試験結果と加速度推 算結果は概ね現象を再現する結果となったので, 数値計算は妥当であるとした.

次に、高速衝突試験のメカニズム解明のため に、高速衝突試験結果をペイロードの加速度とし て代入することで、衝撃吸収材の応力ひずみ線図 に換算する.本研究の高速衝突試験では、ターゲ ットの変形と材料の変形が起こるため、試験結果 から材料の応力ひずみ線図に換算するには、シェ ルから見たペイロードの相対運動を計測する必要 があるが、加速度センサはFig.8で定義したターゲ ットから見たypの運動を計測している.そこで、 ターゲットの変形は静的押込み試験結果から推算 することでシェルの運動を求める.ターゲットの 推算結果は試験後に計測されたターゲットの変形 量と一致し、加速度推算においてもターゲットの 変形が支配的である衝突初期においては試験結果 と一致していることからも妥当である.

この結果を静的押込み試験とともにFig.10に示 す.この結果から32%程度のひずみが発生するこ とが示された.試験後に行った実測では27パーセ ント程度の変形が確認されており,概ね一致する 結果となった.応力においては,振動によるピー クの上昇に加えて,振動を無視したとしても Plateau応力が静的押込み試験を超えている結果見 られる.これは,ひずみ速度依存性による応力の 増加と考えられ,今後試験回数を増やして詳細を 明らかにする必要がある.

Fig.10 発泡ウレタン材料の高速衝突試験 応力ひずみ線図換算結果

5. SRS振動解析

ウレタン中密度材料の高速衝突試験結果とShock Response Spectrumの結果をFig.11とFig12に示 す.通常の弾性体同士の衝突の場合,衝突時の応 答は正弦波を示す.一方,衝撃吸収材でエネルギ を吸収すると,応力一定で潰れていくため,数値 計算が示す通り,矩形の加速度応答を示すと予想 される.そのため,比較として,それぞれ振幅 3000Gの250Hzのsin波と400Hzの矩形波を並べて 示す.

正弦波(弾性衝突)の場合,固有振動数410Hz に対して最大ピーク4955Hzを示し,それ以上の固 有振動数の系に対しては最大ピークよりも小さい 値を取ることが分かる.一方,完全な矩形波の場 合,固有振動数410Hzに対して最大ピーク5577Hz を示すと,それ以上の固有振動数の系に対しても 同様のピーク値を取ることが分かる.高速衝突試 験のSRS結果を見ると,固有振動数5kHz以下の系 に対しては,ハーフサインと矩形波の間程度のピ ークを持つことが分かる.これは,試験結果の加 速度の立ち上がりが完全な矩形波に比べて,緩や かであることが影響している.5kHz以上の高い固 有振動数を持つ系には、矩形波以上のピークを持 った.これは、試験結果に6kHz程度の振動が乗っ ていることが要因であると考えられる.

衝突中に振動が乗ったことについて考察を行う.ウレタン材料では変形後の材料が変形前に比べて,弾性率が低下し,弾性域が大きくなることが試験後の観察からも分かった.ウレタン材料の 弾性率が低下していることはFig.10の加速度の低下が緩やかなことからもわかる.これにより,弾 性応力波の伝播速度が低下し,弾性振動が発生しているため,推算を超える加速度が振動として計 測されたと考えられる.

今後,数値計算による加速度推算をより正確に 行うためには,適用する材料の圧縮特性に合わせ て,弾塑性としてモデル化する必要がある.この 際,解析の入力データとして,材料の弾性率を考 慮する必要があるが,今回のウレタン材料の場 合,圧縮前の弾性率と圧縮後の弾性率が大きく異 なる様子が確認されたので,その両方を適切にモ デル化する必要がある.

Fig.11 発泡ウレタン材料の高速衝突試験

Fig.12 発泡ウレタン材料の高速衝突試験 Shock Response Spectrum

6. まとめ

本研究は宇宙機の着地に適した衝撃吸収材料が 数十m/sオーダーで衝突した際の衝撃応答を明らか にすることを目的に行い以下の知見を得た.

・衝撃吸収材としてポリウレタンフォームを選定 し、高速衝突試験を行うことで最大加速度3733G の加速度応答データを取得した.加速度データか らの変形量は実測データと近い結果となったが、 応力ひずみ線図に換算すると、静的押込み試験を 超える結果となり、速度依存性の影響だと考えら れる.

・試験結果をSRS解析する事により,正弦波振動に 比べて,高い固有振動を持つ系でより高いピーク 応答を示すことがわかり,実機適用時,振動試験 では高い固有振動を持つ機器でピーク応答を示す 可能性が考えられる.

・今後,加速度推算をより正確に行うためには, 衝撃吸収材料の変形後の弾性波伝播,速度依存性 による応力上昇を考慮する必要があることが分か った.そこで,さらなる高速衝突試験でそれらを 明らかにすることが今後の課題である。

謝辞

試験を進める上で,角田宇宙センター 丹野英幸 様にご協力頂きました.材料において,首都大 北 薗幸一教授,名古屋大 小橋眞教授にご協力頂きま した.深く感謝致します.

参考文献

[1]山田哲哉, 北薗幸一, 丹野英幸, "小型カプセル の惑星着陸衝撃緩和のためのCrushable構造の研 究," 第58回宇科技連講演会, 2014.

[2]K. Nakamura, "Analytical Study of Landing Shock Absorber in the High-Speed Impact Test," ISTS, 2017.

[3]L.J.Gibson, M.F.Ashby , 大塚正久訳, セル構造体, 内田老鶴圃, 1993

[4]秋葉光雄, "ポリウレタンの劣化と安定化,"日本 接着学会誌 Vol.40 No.6, 2004.

[5]丹野英幸, 小室智幸, 山田哲哉, 北薗幸一, "バリ スティックレンジによるCrushable構造評価試験," 第58回宇宙科学技術連合講演会, 2014.

[6]T. Irvine, "AN INTRODUCTION TO THE VIBRATION RESPONSE SPECTRUM," 2012.