A14 ガタ・摩擦を含む伸展トラスの入力振幅依存性

籏持 天(早稲田大学大学院),石村康生(JAXA),山川 宏(早稲田大学理工学術院)
Takashi Hatamochi (Waseda University), Kosei Ishimura(JAXA), Hiroshi Yamakawa (Waseda University
Faculty of Science and Engineering)

1. はじめに

近年の宇宙観測ミッションの高度化に伴い,よ り高性能な観測機器を使用した高精度な観測がト レンドの一つとなっている.一般的に観測機器は 高性能化に伴って大型化する.例えば消費電力が 大きくなる場合がある.その場合多くの消費電力 をまかなうために大型の太陽電池パネルを使用す る.電波望遠鏡であればより大きな焦点距離を必 要とすることもある.このような大型化に伴って より大型な宇宙構造物が採用されることが増えて きている.[1]

しかし人工衛星はロケットのフェアリングに収 納の上宇宙空間へと運搬するという特性上,宇宙 構造物には大きさの制約がある.そのため大型衛 星をフェアリングに収納する場合には宇宙構造物 を折り畳み可能な構造にし,フェアリングに収納 する際には折り畳み,運用時に伸展・展開する必 要がある.[2]また上述の折り畳み構造には摺動部 が存在し,それらは本質的に取り除くことができ ない.

また先述の観測ミッションの高度化に伴って宇 宙構造物自体にもより高度な位置制御性が求めら れている.昨年打ち上げられたX線天文衛星 HITOMIにおいては先端の位置精度が伸展トラスの 長さ12[m]に対して面内変位で3[mm]という精度が 要求されている.このような厳しい制度要求にお いては摺動部が存在することによる振動特性の変 化を把握することが必須であると思われる.

以上の背景を踏まえ本論文では宇宙構造物のう ち伸展トラスに焦点を当て,実験と解析により固 有振動数を指標に伸展トラスの振動特性を評価する.それにより高精度な動特性予測につなげることを目的とする.

2. 伸展トラスの加振試験

2.1 実験装置

図1は実験で用いた伸展トラスの実機(NEXT-EOB) の写真である。伸展本伸展トラスはキャニスター内 に地面と垂直に装着されたスクリュージャッキの 溝にトラスの各プレートにある突起が差し込まれ ており、スクリュージャッキが回転することで上に 持ち上げられ,伸展する構造となっている。本実験 では加振器と治具を図2のようにトラスの最上面に 取り付けた。黄色い矢印が加振器の加振方向,赤い 矢印が加速度ピックアップの感度方向を示す.取付 け治具に対して2つの加振器を取り付け、2つの加 振器が共にx軸方向に加振し、曲げ振動を加えるこ とができるようにした。それと合わせ、加速度ピッ クアップも感度軸がx軸方向となるように配置した。

図1 トラス実機(NEXT-EOB)

図2 トラスを上面から見た様子

3.2 実験結果

伸展中の3状態に対して加振試験を行った. (図 5)トラス上部の加振器より正弦波状の曲げ加振 力を出力し,周波数を連続的に変化させることでス イープ加振を行い,共振時の加振周波数と加振力, 加速度を測定した.測定は加振器の性能を考慮し, 各状態に対してスイープ中の最大加振力が 1.0,0.75,0.5[N]となる場合に分けて測定を行った. 1,2,3の加振試験結果をそれぞれ図に示す.図の横軸 は加振力,縦軸は固有振動数である.また結果の数 値を表2に示す.

図5 伸展中の3状態

図6 固有振動数の加振力依存性

表 2 加振試験結果

状態1		状態2		状態3		
加振力	固有振動数	加振力	固有振動数	加振力	固有振動数	
0.3	27.7	0.4	15.8	0.3	13.8	
0.4	27.7	0.6	15.4	0.4	13.1	
0.6	26.3	0.7	15.2	0.5	12.9	

図 6, 表 2 を見ると、どの状態においても加振力を 増加させると固有振動数が減少するという定性的 特徴が見て取れる。またその減少率はそれぞれ 5.1,3.7,6.3[%]となった。

 数値解析と入力振幅の変化による固有振動 数変化挙動解析

4.1 解析モデル

本論文では、単純化のためトラス先端の挙動は1 次元方向のみを考慮する.またモデル化の単純化 のため、伸展トラスを質量のない片持ち梁の先端 に質点が接続されている状態ものと仮定(図3) し、トラス・キャニスタ間のガタ,摺動部のガ タ、トラス本体の減衰、トラスの剛性を考慮して1 自由度系の振動モデルを作成した.(図4).

図3 伸展トラスを片持ち梁と仮定したときの 模式図

図4 ガタ・摩擦を含む1自由度系振動モデル

また本振動モデルでは次のような仮定を設けている.

- 解析開始時(t=0)にはx=loであり、ガタ幅 は左右で等しくなっている
- 2) 移動がガタ内で収まる際には最大動摩擦力fmと なる摩擦力がはたらく
- 3) ガタ内での移動速度がδv以上のときは
- $F_f = f_m \tau \delta \delta$
- ガタ内の移動速度がδv未満のときF_fは速度に比 例する

以上の4つの仮定を元に条件ごとの摩擦力の定式 化を行うと次のようになる. 質点にかかる力をF とし、右向きを正とし、ガタ内ではたらく摩擦力 を f_{f} 、ダンパーによる力を f_{damp} 、ばねによる弾性力 を f_{sp} とおくと質点にかかる力は

$$\mathbf{F} = -\mathbf{f}_{\rm sp} - f_f - f_{damp} \tag{1}$$

i) $-\delta \le x \le \delta$ のとき

$$\mathbf{f}_{\rm sp} = \mathbf{0} \tag{2}$$

ia) $\delta_v \leq |\dot{x}| \mathcal{O} \geq き$ $f_f = f_m \times sgn(\dot{x})$ (3)

ib)
$$\delta_v > |\dot{x}| \mathcal{O}$$
とき
 $f_f = f_m \times \dot{x} / \delta_v$ (4)

ii) $\delta < x O b$

$$\mathbf{f}_{\rm sp} = k(x - \delta), \mathbf{f}_{\rm f} = 0 \tag{5}$$

iii) $-\delta > x \mathcal{O} \geq \delta$

$$f_{sp} = -k(-x - \delta), f_f = 0$$
 (7)

となる.この定式化により質点に関する運動右方 定式

$$\mathbf{m}\ddot{\mathbf{x}} = -\mathbf{f}_{\mathrm{sp}} - f_f - f_{damp} \tag{8}$$

により質点の位置と速度が分かれば加速度を求めることができる.よって初期条件を定めればルン ゲクッタ法により連続的に時間ごとの質点の位置,速度,加速度が数値解析的に求まる.

4.2 解析結果

伸展トラスの固有振動数の振幅依存性の定性的な 特徴を評価するため,3.1 で作成したモデルの質点 にあらゆる大きさの正方向の初速度を加えること で振幅を変化させて出力波形からそれぞれの場合 における固有振動数を測定した.なお固有振動数 は質点の変位の時間変化のグラフの2周期目の波 の周期から固有振動数を計算している.その際に 用いたパラメータを以下に示す.(表1)これらの パラメータは伸展トラス本体や治具の寸法・材 質,3つの伸展状態における試験で観測された固有 振動数を参考に定めた.またそれぞれのパラメー タ設定時の解析結果を図7~9に示す.

パラメー ター	状態 1	状態 2	状態 3		
m[kg]	10.0	10.0	10.0		
k[N/m]	3.03×10^{5}	9.85×10^{4}	7.48×10^4		
δ[m]	0.001	0.001	0.001		
C[N/m/s]	20.0	20.0	20.0		
$f_m[N]$	0.700	0.700	0.700		

表1 解析に用いたパラメータ

図7 2段伸展時を考慮した1自由度系モデルの 固有振動数の振幅依存性

図8 3段伸展時を考慮した1自由度系モデルの 固有振動数の振幅依存性

図 9 全伸展時を考慮した 1 自由度系モデルの 固有振動数の振幅依存性

図 7~9 を見るとどの場合においても振幅の増加と 共に固有振動数が増加するという定性的特徴が見 て取れる.ガタ幅に対する振幅の割合が小さい場合 には振幅の増加と共に固有振動数は急激に増加し, ガタ幅に対する振幅の割合が大きくなっていくと 固有振動数の増加の傾きは緩やかになっていき,や がて飽和するという結果になった.

5. 解析結果との比較による考察

観測された固有振動数を*f*[Hz]とおき, その際に観 測された加速度を*a*[m/s²], 振幅を A とおく. ここで、単振動の加速度を求める式

$$A\omega^2 = a \tag{9}$$

は

$$A = \frac{a}{(2\pi f)^2} \tag{10}$$

と変形できる。これにより振幅が求まる。これを各 伸展状態の最大加振力時、最小加振力時の2つに対 して適用することで2つの振幅の比を求める.次に 解析データ上のプロットから実験で得られた固有 振動数の最大値・最小値をとるような振幅/ガタ幅の 値をそれぞれ調べ,二つの振幅/ガタ幅の値の比をと り,比較する.各状態の最大固有振動数,最小固有 振動数,それらを記録した際の加速度 a,上式を用 いて計算した振幅 A を次の表 3 に示す.

	固有振動数 Hz	27.7	26.3
状態 1	共振時の加速度 m/s ²	0.61	1.14
	振幅 m	2.0×10^{-5}	4.2×10^{-5}
	固有振動数 Hz	15.8	15.2
状態 2	共振時の加速度 m/s ²	0.36	0.65
	振幅 m	3.7×10^{-5}	7.1×10^{-5}
	固有振動数 Hz	13.8	12.9
状態 3	共振時の加速度 m/s ²	0.37	0.60
	振幅 m	4.9×10^{-5}	9.1×10^{-5}

表 3	各状態での固有振動数,	加速度,	振幅

状態1について検証する.固有振動数が26.3[Hz]の とき,振幅/ガタ幅の値はグラフから15近傍である. 表3では27.7[Hz]の際の振幅が2.0×10⁻⁵[m]である ことからグラフ上では振幅/ガタ幅の値は7.5近傍で あると予測できるが,グラフのプロットを見ると振 幅/ガタ幅が7.5付近の時固有振動数は25[Hz]近傍で ある.また実験では振幅を小さくすると固有振動数 は増加したが解析結果では減少しており,定性的特 徴も異なっている.この定性的特徴の相違は状態 2,3の条件でパラメータを選んだ際にも同様に見ら れる.したがって今回の検証方法において作成した 1 自由度系モデルの妥当性を評価することが困難で あった.以上のことから伸展トラスの振動特性予測 に際して,解析において今回行っていない摩擦力・ 減衰の感度解析,より精緻なモデルでの評価が必要 であると考えられる.

6. まとめ

伸展トラス実機(NEXT-EOB)の加振実験および 振動モデルの作成・解析により伸展トラスの振動特 性の評価を試みた.実験により伸展トラス NEXT-EOB の振動特性として振幅の増加と共に固有振動 数が減少することが確認された.トラスを模したガ タ・摩擦を含む1自由度系振動モデルを用いた解析 においては実機と対照的に振幅の増加に伴って固 有振動数が増加するという結果を得た.本モデルの 妥当性評価には振幅以外のパラメータによる感度 解析やより精緻な解析モデルでの評価が必要であ る.

7. 参考文献

 W.Keith Belvin,"Modeling of Joints for the Dynamic Analysis of Truss Structures", Langley Research Center Hampton, Virginia, 1987

[2] Junjiro Onoda," Two-Dimensional DeployableTruss Structures for Space Applications", Institute ofSpace and Astronautical Science, Tokyo, Japan, 1988

[3] J.M.Chapman,F.H.Shaw,W.C.Russell,"Dynamics of Trusses Having Nonlinear Joints",Boeing Aerospace Company Seattle,Washington

謝辞

実験また実機の製作をご担当頂いた日本飛行機株 式会社の皆様に心より感謝いたします.