B15 3D プリンタを利用した構造最適化トラス

高野敦 (神奈川大学), 〇上妻洋平 (神奈川大学), 山崎悠太 (神奈川大学)

Atsushi Takano (Kanagawa UN), Yohei Kozuma (Kanagawa UN) and Yuta Yamasaki (Kanagawa

University)

3D-printer-generated optimum truss structure

1. 目的および背景

近年,複雑な構造物でも製作可能な 3D プリンタ が普及しつつある.これにより,従来は時間・製造 性・コストの制約により実現困難であった複雑な構 造物も成形することが可能となった.宇宙での有用 性も期待されており将来,3D プリンタを用いて宇 宙空間に構造物を造形することも考えられる.そこ で,本研究では宇宙構造物でも用いられるトラスの タグチメソッドによる応力と座屈を考慮した構造 最適化設計を試みた.

2. タグチメソッドについて

2.1 タグチメソッドとは

タグチメソッドとは田口玄一博士が考案した手 法である. タグチメソッドでは生産段階でばらつき を抑えるのではなく,研究,又は設計の段階から考 慮する考え方である.

今回は、タグチメソッドのパラメータ設計と呼ば れるばらつき原因に強い定数・条件を見つけ出す手 法を用いる.今回は製造のばらつきまでは考慮しな かったがこの手法を用いることで将来的に考慮で きるメリットがある。因子と水準と呼ばれる設計者 が自由に値を設定できるパラメータと、直交表と呼 ばれる組み合わせに基づき実験又は解析を行い、結 果を分散分析で評価し最適水準を求める.

2.2 タグチメソッドの利点と欠点

タグチメソッドの利点は、少ないパターン数で実 験又は解析を行うことで、最適解が得られる可能性 がある.これは遺伝アルゴリズムやモンテカルロ法 などの最適化方法と比べると圧倒的に少なパター ン数で最適化することができる.

欠点は,このタグチメソッドという手法は因子の 効果の加法性が成り立つ場合に限られてしまうこ とである.

3. 3D プリンタについて

本研究で 3D プリンタを用いた理由としては分割 数,ベイ数,部材の太さを自由にしかも低コストで 製造できるメリットがあるからである.

しかし、本学にて利用できる 3D プリンタの 「uPrint SE」(Stratasys 社)の性能は積層ピッチ 0.254[mm],射出幅 0.508[mm]である.しかし、図1 では最低射出幅を 1.016[mm]としている.これは uPrint SE の造形の設定が、先に輪郭を描いた後に内 部を蛇行して埋めていく仕様であることに由来す る.ゆえに 3D プリンタの仕様上の観点から最低射 出幅を 1.016[mm]とした.

次に,最低射出幅 1.016[mm]の倍数ではない寸法 については図1のように,層と層の間に空間を作る ことで任意の寸法を表現する仕様となっている.ト ラスの部材内部に空間ができてしまうと破壊試験 を行った際に,正確な実験結果を得られない可能性 がある.そのため,本研究では部材の最小厚さを 1.016[mm]とし,0.508[mm]ずつ増やしていく.

図1 空間が挿入される場合の射出ヘッド経路 パターン⁽¹⁾

4. トラス解析

トラスの破壊試験では、3 点曲げトラスで試験を 行う.中央の集中荷重は佐藤・堀内ら⁽¹⁾の研究を引 き継ぎ設計値であった 191.6[N]を与え、これに耐え られるように設計する(図 2).トラスは全長 180[mm].更に、トラスの両端にガイドを 10[mm] ずつ付加する.高さ 30[mm],奥行 30[mm],初期部 材厚さ 1.016[mm]である.3D プリンタの制約により、 部材を厚くする場合は 0.508mm ずつ増やしていく. 次に部材は「uPrint SE」のモデル材「ABSplus(アイ ボリー)」を使用することから、許容応力 10.2[MPa]、 ヤング率は文献(1)より 1840[MPa]、ポアソン比 0.35[-]を使用した.

図2 最適化対象トラス

今回の最適化に用いる因子は、ベイ 1、ベイ 2、 ベイ 3 のスパン長とスパン 1、スパン 2、スパン 3 の縦分割数とした.水準はベイのスパン長が 10mm, 20mm, 30mm. スパンの縦方向分割が 1、2、3 とし た. なお、ベイ 1、2、3 のスパン長合計が 180mm に満たない場合,新たにベイ4を生成する.ただし、 ベイ 4 の縦方向分割数は 1 とする.表 1 はこれらの 因子と水準をまとめたものである.

因子	水準1	水準 2	水準 3
A:空き列	-	-	-
B:ベイ1スパン長(mm)	10	20	30
C:ベイ2スパン長(mm)	10	20	30
D:ベイ3スパン長(mm)	10	20	30
E:スパン1縦方向分割	1	2	3
F:スパン2縦方向分割	1	2	3
G:スパン3縦方向分割	1	2	3
H:空き列	_	-	_

表1 因子と水準

そして,表1の因子と水準を用いて混合系直 交表 L18⁽²⁾を作成した(表 2)

表2 直交表

	Α	В	С	D	E	F	G	Η	
No.	空き列	スパン長(mm)	ベイ 2 スパン岷(mm)	ベイ 3 スパン岷(mm)	スパン 1 縦方向分割	縦方向分割	スパン3 縦方向分割	空き列	
1	—	10	10	10	1	1	1	_	
2	—	10	20	20	2	2	2	—	
3	—	10	30	30	3	3	3	—	
4	—	20	10	10	1	2	3	—	
5	—	20	20	20	2	3	1	-	
6	—	20	30	30	3	1	2	—	
7	—	30	10	10	2	3	2	—	
8	—	30	20	20	3	1	3	—	
9	—	30	30	30	1	2	1	_	
10	—	10	10	10	3	2	2	_	
11	—	10	20	20	1	3	3	_	
12	—	10	30	30	2	1	1	_	
13	—	20	10	10	2	1	3	_	
14	—	20	20	20	3	2	1	_	
15	—	20	30	30	1	3	2	_	
16	—	30	10	10	3	3	1	_	
17	_	30	20	20	1	1	2	_	
18	_	30	30	30	2	2	3	_	

例えば表3のようなトラスを作成する場合は、ベイのスパン長、スパン縦分割数は図3のようになり 最終的な構造は図4のようになる.

図3 No.4 トラスの分割方法

図4 No.4 トラス完成形

5. 最適化手順

表2の直交表によりできた18個のトラスについ て最適化を行っていく.最適化手順を以下に記す. なお,使用した解析ソフトは文献(3)のものに静解析 を加えたものである。

- (1) 静解析・座屈解析を実行
- (2) 各部材に生じた応力と許容応力を比較し,不足 していた場合,部材厚さを 0.508mm ずつ増や す.
- (3) 各部材に生じた軸力とオイラー座屈荷重を比 較し,不足していた場合,部材厚さを 0.508mm ずつ増やす.
- (4) 全ての部材が2と3を満足した時の質量を求める.
- これを18パターン全てで実行する.

6. 評価

6.1 解析結果

解析をした結果、18 パターンの中で質量最小は No.1 の 23.97g, 質量最大は No.8 の 38.58g であるこ とがわかった. 図 5 は No.1 のトラス, 図 6 は No.8 のトラスである.また、表4 に解析の結果を示す.

図5 No.1 トラス

図6 No.8 トラス

	表4 解核	斤結果		
No.	座屈荷重 (荷重値 191.6N)	質量 (g)		
1	-1.32	23.97		
2	-5.60	27.46		
3	-4.48	39.13		
4	-2.14	33.76		
5	3.64	36.74		
6	1.39	35.20		
7	-2.65	33.95		
8	-18.58	39.58		
9	-8.32	24.17		
10	-2.91	29.76		
11	-12.49	38.33		
12	1.33	24.25		
13	-1.62	28.87		
14	-2.71	32.49		
15	-9.55	38.69		
16	2.53	35.12		
17	1.21	33.89		
18	1.24	34.83		

6.2 構造最適化トラス

図7は因子の要因効果図である.今回は質量を 最小化したいためそれぞれの因子について一番 数値低い水準のものを採用する.その結果,最適 因子は B1C1D1E2F2G1 に決定した.表5に最適 水準,図8に最適化トラスを示す.

表 5 最適水準

Α	В	С	D	Е	F	G	Η
空き列	ベイ 1 スパ ン長(mm)	ベイ 2 スペ ン長(mm)	ベイ 3 スペ ン岐(mm)	スパン 1 縦	スパン 2 方 向分割	スパン 3 方	空き列
	10	10	10	2	2	1	

図8 最適化トラス

また,この最適化トラスの推定質量 M は下式⁽²⁾ で求められる.

 $M = \overline{M} + \left(A - \overline{M}\right) + \left(B - \overline{M}\right) + \left(C - \overline{M}\right) + \left(D - \overline{M}\right) + \dots + \left(H - \overline{M}\right)$

上式より今回の推定質量は 19.24g となった. しかし、本水準に基づきトラスの設計を行い、質 量を測定したところ質量 47.06g となり最適化は 失敗した.

7. 考察

今回最適化失敗の原因としては、まずタグチメソ ッドの前提である要因の効果の加法性が成り立た なかった可能性が高いことが挙げられる.次に、最 適水準による最適化トラスが各部材のローカルの 曲げ応力が大きくかなりの補強が必要であったこ とがある.これは直交表の18パターンでは起こら なかった事象である.また、直交表の18パターン の中には部材ごとのオイラー座屈が満足するよう に補強しても全体の座屈が起こる場合があり、その 場合補強が試行錯誤的になったことも挙げられる. 最後に、図9のように同じスパンの縦方向分割数が 1のベイでも隣接するベイの分割数が1と2の場合 では形状が変化してしまう.このようにベイの形状 が隣接するベイの分割数により変化することも原 因として考えられる.

図9 ベイの形状の変化

8. 結言

本研究ではタグチメソッドを用いた構造最適化トラ スを作成することを試みた.しかし,結果は質量 47.06g と重くなり最適化には失敗してしまった.原因として は要因効果の加法性が成り立たなかったことや,ベイ の形状が隣接するベイの分割数で変化することが挙げ られる.今後は今回の知見を活かし,モンテカルロ法 などによる最適化を検討していく.

参考文献

- 高野敦,堀内翔太,佐藤浩彰, 3D プリンタによる 応力対応型トラス構造,第 30 回宇宙構造・材料シ ンポジウム(ISAI/JAXA), 2014 年
- 2) 田口玄一,横山巽子,ベーシックオフライン品質 工学,日本規格協会 2013 年
- 川井忠彦,藤谷義信,座屈問題解析,培風館 1991
 年