B03 Ti-6Al-4V レーザー積層材の高温強度と微視組織

櫻井勇也(首都大・院), 筧幸次(首都大) Yuya SAKURAI (TMU), Koji KAKEHI (TMU)

1. 緒言

α+β型Ti合金であるTi-6Al-4Vは優れた強度特性
を持ち,耐熱性・耐食性も高いため,多くの航空
宇宙材料に適用されている.Ti合金の持つ鋼の
60%程度の密度と鋼より大きな比強度は,CFRP

(炭素繊維強化複合材料)と並んで,近年の航空 機の燃費向上をもたらしたひとつの要因である [1]. 一方, ラピッドプロトタイピングを実現する ために開発され,最近注目されているのが付加製 造(Additive Manufacturing)による積層造形で、従来 の除去加工・塑性加工では実現できない自由で合 理的な設計が可能であり,航空機エンジンの燃料 噴射ノズルなどへは既に実用化されている[2]. Al 合金と異なり CFRP との相性が良い Ti 合金は, 耐 熱材料や構造材料として今後更に需要が拡大す ることが予想されるが、その中でも、比較的高価 な Ti の歩留まり向上と, 難切削材である Ti に対 応した加工設備の導入が不必要になることでコ ストが大きく削減されることが見込まれる金属 3D プリンターを用いて製造された Ti 合金部品の 微視組織は, 圧延材はもちろん, 粉末冶金材や鋳 造材, 鍛造材で得られるいずれの組織とも異なる ことが指摘されている[3]. これは,積層造形法で は 100µm 以下というごく薄いレイヤーで敷かれ た粉末が、レーザーや電子ビームなどの熱源によ り溶融した後に急冷されるという、今までの加工 法にはなかった熱履歴を辿ることに理由がある. 金属積層造形法であるレーザビーム積層造形法, 電子ビーム積層造形と従来的な加工法(圧延)によ って製造された Ti-6Al-4V 合金試料の微視組織と 機械的特性を比較し, 金属積層造形法の特徴を材 料学的・金属学的視点から明らかにする. 従来用 いられてきた熱処理による強化が適用できるか

どうかを検討する.

2. 実験方法

本研究のための供試材について, レーザー積層 法により積層造形した試料(以下レーザー積層材) を製造する装置として EOSINT M280 を,粉末は EOS Titanium Ti64 を用いた. また電子ビーム法に より積層造形した試料(以下電子ビーム積層材)を 製造する装置として Arcam A2X を, 粉末は Arcam Titanium Ti6Al4V を用いた. 積層造形の後, 残留 応力を除去するためレーザー積層材に 650°C/3h(空冷)の焼鈍処理をした. この試料を積 層まま材とし、溶体化+時効処理後の試料を熱処 理材とする.積層方向に対し平行に切り出した試 料を 0°材, 垂直に切り出した試料を 90°材として 区別する. レーザー積層材は一片が 35mm の正立 方体で造形し、電子ビーム積層材は直径 10mm 長 さ 80mm の円柱形で造形した. レーザー積層材 を厚さ3.1mmの板材にスライスし,引張試験片と 組織観察用試料を板材から切り出した. 平行部が 2.8×3.0×19.6 mm になるように切り出された引張 試験片を、熱処理材については石英管に真空封入 の後, 溶体化処理 954℃/2h(水冷), 時効処理 538°C/4h(空冷)を施した後、機械研磨を施し、 0.5mm/min の引張速度で室温引張試験を行った. 高温強度を比較するために,同じ形状の試験片を 用いて 450°C/400MPa のクリープ試験を実施した. 組織観察試料については機械研磨を施した後、鏡 面研磨を施し、走査型電子顕微鏡、EBSD(電子線 後方散乱回折法)で組織観察と相解析をした.また XRD(X線回折法)解析を実施した.

(e)

(f)

Fig.1 レーザー積層まま材 (a)IPF Map, (b)Phase Map, (c)KAM Map, 電子ビーム積層まま材(d)IPF Map (赤点線は粒界 α 相粒), (e)Phase Map, (f)KAM Map(白矢印は粒界 α 相内部の亜粒界)

3. 実験結果

レーザーと電子ビーム,2種類の金属積層材の IPF Map と KAM Map, Phase Map を Fig.1 にそれ ぞれ示す.いずれの試料においても針状 α 相粒 (acicular alpha)と非平衡相である α'マルテンサイ ト相から成る Widmanstätten 組織が形成された. 旧β粒界に発生し、冷却とともに、{110}βに沿っ てそれぞれ Burgers の結晶方位関係を保ちながら 成長した針状α相が観察された. その内部は結晶 方位差が小さく転位が少ないことが分かる (Fig.1(c)). Fig.1(c)に示すように,結晶方位差が大 きい領域と微細組織の存在する領域は一致して おり,これらは a'マルテンサイトであると考えら

れる.2種類の金属積層材の特徴として、レーザ ー積層まま材ではサブミクロンオーダーの極め て微細なα'粒が分散して存在するのに対し,電子 ビーム積層まま材では同様の微細粒は見られな い. また, 旧β粒界に沿って成長した粒界α相の 形成が確認され, Fig.1 (d)に点線で示している. KAM Map からは、粒界 α 相の成長・合体中に内 部に生じた連続的な亜粒界(Fig.1(f)に白矢印で示 す)が,結晶方位差として現れている.レーザー積 層まま材において, KAM Map の結晶方位差が大 きい領域と微細流の存在する領域は一致してお り、これらは a'マルテンサイトであると考えられ る.

Fig.2 レーザー積層後熱処理材 (a)IPF Map (赤点線は塊状 α 相), (b)Phase Map, (c)KAM Map

Fig.3 圧延まま材 (a)IPF Map, (b)Phase Map, (c)KAM Map

レーザー積層材では熱処理の前後で微視組織 の変化が見られた. Fig.2 に熱処理後のレーザー積 層材の IPF Map を示す. Widmanstätten 組織は熱処 理の後でも維持されたが,針状 α 相粒の長手方向 への長大化が見られた. また,熱処理前(Fig.1(a)) には見られなかった塊状 α 相粒(blocky alpha)の形 成が確認された(Fig.2(a)). これは,旧 β 粒界に成 長したものの,積層造形中の急冷のために十分成

		引張強さ [MPa]	0.2%耐力 [MPa]	破断伸び [%]
圧延まま材		1010	930	16.3
圧延後熱処理材		1230	1160	6.1
レーザー積層 まま材	0°	1150	1090	8.8
	90°	1160	1020	8.5
レーザー積層 後熱処理材	0°	1270	1150	2.4
	90°	1280	1120	2.6

	Table.1	室温引	張試験結!	Ŧ
--	---------	-----	-------	---

長できなかった粒界 α 相が,熱処理中の高温で成 長し合体したものである.

レーザー積層まま材と圧延材を微視組織と機 械的特性の双方の観点から比較する. Table.1 は室 温引張試験の実験結果を,引張強さと 0.2%耐力, 破断伸びについて示している.レーザー積層材で は積層方向に平行に引っ張った試料を 0°材,垂直 に引っ張った試料を 90°材とした.レーザー積層 まま材は圧延まま材以上の機械的強度を示した が,延性は圧延材の半分以下であった.

Fig.3 には圧延材の IPF Map, Phase Map, KAM Map をそれぞれ示す. 圧延材は等軸 α 相粒+粒界 β 相から成る α + β の二相組織であるが(Fig.3(a), (b)), レーザー積層まま材は針状 α 相から成る非 等軸粒組織で,また β 相粒もほとんど存在しない (Fig.1(a), (b)). 等軸 α 相粒内に転位ひずみが多く

Fig.4 450°C/400MPa クリープ試験 (a)時間—ひず みグラフ, (b)ひずみ—ひずみ速度グラフ 残っている圧延材に比べて(Fig.3(c)), レーザー積 層まま材の針状 α 相の内部では,結晶方位差が小

さい (Fig.1(c)).

熱処理の前後での機械的特性の変化を Table.1 に示す.レーザー積層材と圧延材の両方において, 熱処理による強度の向上の延性の低下が明らか になった.また,室温においては,レーザー積層 まま材と,熱処理を施した圧延材とはほぼ同等の 強度特性を持つことが分かる.しかし,積層材の 延性は圧延材の半分以下である.延性低下は,溶 接組織で報告されている intergranular hot crack [4], liquation crack[5]の影響がある可能性がある.

クリープ強度を比較するために 450°C/400MPa のクリープ試験を行った.Fig.4 (a)に時間—ひずみ グラフを示す.いずれも典型的な高温クリープ挙 動を示したが,圧延材が熱処理によって大きく破 断寿命を伸ばしたのに対し,レーザー積層材では

Fig.5 450°C/400MPa クリープ試験破面 (a)圧延ま ま材 $\varepsilon_f = 20.1\%$, RA = 76.0%, (b)レーザー積層 まま材 $\varepsilon_f = 11.8\%$, RA = 44.4%

熱処理の前後でクリープ挙動に大きな変化は見 られなかった. Fig.4 (b)のひずみ—ひずみ速度グ ラフを見ても, 圧延材は熱処理の前後で最小クリ ープ速度が大きく変化している一方で, レーザー 積層材の場合にはほとんど変化がない. Fig.5 のク リープ破面の顕微鏡観察写真からは, 破面の形態 と断面減少率に生じた違いが確認され, クリープ 延性の低下は, 引張延性同様, intergranular hot crack, liquation crack の影響が考えられる.

4. 考察

Fig.1 のようにレーザー積層材と電子ビーム積 層材との間に微視組織形態の違いが生じた理由 として,積層造形法の違いによる,冷却速度の大 きさの違いが考えられる.レーザー積層材では不 活性ガス(Ar ガス)と低いステージ温度(約 70°C)に より試料は焼結後すぐさま急冷されるが,真空雰

Fig.6 各試料のβ相体積率

Fig.7 各試料の XRD プロファイル

囲気中で積層が行われる電子ビーム積層材では 冷却速度が比較的穏やかである.また,電子ビー ム溶融法では粉末床全体が予備加熱されて仮焼 結状態になるため,これも冷却速度を抑える要因 になったと考えられる.

積層材における延性の低下は,非等軸粒組織であ ることとβ相率が小さいことが理由として考えら れる.Fig.6 は各試料においてβ相が全体に占める 割合であるβ相体積率を示したグラフである.β 相体積率はPhase Mapの分布から求められた. 圧 延まま材に比べて他3つの積層材試料はいずれ も半分以下のβ相体積率であった.また,顕著な 方位差は確認できない.この傾向はFig.7 に示す XRD プロファイルにも現れている. 圧延材では 2 θ =39°の付近にβ相のピークが存在するが,レー ザー積層材では熱処理の前後のいずれの段階に おいてもβ相の明確なピークは確認されなかった. なお,α相とα'相は,結晶格子の格子パラメータ の差が小さいため識別することができなかった [6].顕微鏡観察においてもマイクロボイドはほと んど確認されず、したがって、金属積層材が持つ 大きな問題であったマイクロボイドの存在が考 えられるが、近年の積層技術の発展によりマイク ロボイドは低減していると考えられる.引張延性 およびクリープ延性の主な原因は、 intergranular hot crack, liquation crack の影響がある可能性があ り、今後の検討課題である.

5. 結言

1. Ti-6Al-4V 金属積層造形材の微視組織観察 の結果,レーザーと電子ビームの両方で針状 α 相 と非平衡相である α 、マルテンサイト相から成る Widmanstätten 組織が観察され, β 相粒はほとんど 存在しなかった.

2. レーザー積層まま材の機械的強度は, 圧延 材に熱処理を施した試料の機械的強度に匹敵す るが, 等軸α粒組織ではないため延性が低い.

 引張延性、クリープ延性の原因として、溶接組織で報告されている intergranular hot crack, liquation crack の影響がある可能性があり、今後の 検討の必要がある.

参考文献

[1] 稲垣育宏,武智勉,白井善久,有安望:新日鉄 住金技報, **396** (2013) 23-28

[2] GE Aviation: 3D Printing Creates New Parts for Aircraft Engines, http://www.geglobalresearch.com

[3] W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu,K. Latham, K. Xiad, M. Qian: Acta Materialia 85 (2015) 74–84

[4] R. G. Thompson, B. Radhakrishnan, and D. E.Mayo: Superalloy 718-Metallurgy and Applications, ed.by E.A. Loria, TMS (1989) 437-455

[5] X. Zhao, X. Lin, J. Chen, L. Xue, W. Huang: Materials Science and Engineering A 504 25 (2009) 129–134.

[6] 松本洋明,小平和生,千葉晶彦:日本金属学会誌, 72 (2008) 989-996