B11 β型チタン合金の冷間圧延によるナノ組織化

戸部裕史 (JAXA), 佐藤英一 (JAXA) Hirobumi Tobe (JAXA), Eiichi Sato (JAXA)

1. 緒言

チタン(Ti)合金は,軽量,高比強度,高耐食 性などの優れた特性から,航空宇宙分野において 機体構造材,エンジン部材,ロケット部品などに 使用されている.現在,エンジンの燃料消費量低 減およびロケット打ち上げコスト低減のために機 体の軽量化が求められており,Ti合金にも使用体 積の低減が必要とされている.

軽量化を実現する方法のひとつに, Ti 合金を高 強度化することが考えられる.高強度を得ること ができれば,使用する合金の断面積を小さくでき るため軽量化につながる.一般的に,金属を高強 度化する手法としては,固溶強化や析出強化,結 晶粒の微細化などが効果的であることが知られて いる.

Ti にβ安定化元素を添加したβ型 Ti 合金は冷間 加工性に優れ,室温において圧下率 99%以上の圧 延加工が可能である.著者らはこれまでに Ti に Zr (ジルコニウム)および Nb (ニオブ)を添加し たβ型 Ti-18Zr-16Nb (at.%)合金において,99%圧延 後にナノメートルサイズの微細粒組織(ナノ組織) が形成されることを見出した[1].また,この圧延 加工によるナノ組織の形成は,合金の高強度化に 有効であった.

圧延加工によるナノ組織化の発現条件には合金 の組成が関わっており,β安定化元素である Nbの 濃度が2at.%高いTi-18Zr-18Nb 合金においては, ナノ組織が形成されず高密度の転位組織の形成が みられた[1].合金組成の違いは合金のマルテンサ イト変態温度に影響し,Nbの添加は1at.%あたり マルテンサイト変態温度を約40K低下させβ相を 安定化させることが報告されている[2].そのため, β相の安定性が圧延加工によるナノ組織化に影響 していると示唆された.しかし,現在のところ詳 しいナノ組織化の条件やメカニズムは明らかとな っていない.ナノ組織化条件は合金元素によらず 相安定性によると考えられることから,具体的な 条件が明らかとなれば,Ti-Zr-Nb 合金のみならず, 様々な構造用 Ti 合金においても相安定性を調整 することで高強度化を図ることができると考えら れる.

そこで本研究では, Nb 濃度を変化させ相安定性 を変化させた Ti-18Zr-Nb (at.%)合金を作製し, 圧 延途中の組織を観察することにより, ナノ組織化 の条件とそのメカニズムを明らかにすることを目 的とした.また, 圧下率 99%で圧延を施した試料 に対しては引張試験を行い, ナノ組織が合金強度 に及ぼす影響についても調査した.

2. 実験方法

アルゴンアーク溶解法を用いて、Nb 濃度を変化 させた Ti-18Zr-(12~18)Nb (at.%)合金インゴットを 作製し、石英管に真空封入した後、1273 K で 7.2 ks の均質化熱処理を施した.その後、室温において 各合金インゴットに対し圧下率の異なる試料を冷 間圧延により作製した.圧下率 99%の圧延を施し た板材の厚さは約 100 µm であった.得られた圧 延材からワイヤー放電加工機を用いて透過型電子 顕微鏡 (TEM) 観察用試料を切り出した.TEM 観 察用試料はツインジェット研磨により薄膜化し、 JEOL 社製の TEM (2010F)を用いて観察を行った. 観察時の加速電圧は 200 kV とした.

また,99%圧延材からは引張試験用の試料を切り出した.引張試験片は,試験片の引張軸が圧延方向(RD:rolling direction)と平行となるように切り出した.引張試験は室温において行い,その

際, ゲージ長は 20 mm とし, 歪み速度は 2.5×10⁻⁴ s⁻¹とした.

3. 実験結果および考察

3.1 圧延によるナノ組織化条件

これまでの研究[1]により, Ti-18Zr-16Nb 合金で は圧延によるナノ組織化が生じるが, Nb 濃度の高 いTi-18Zr-18Nb 合金においては生じないことがわ かっている. そのため,より Nb 濃度が低くβ相が 不安定な Ti-18Zr-15Nb および 12Nb 合金に対し, 圧延後の組織を TEM を用いて観察した.

Ti-18Zr-15Nb 合金における, 圧延前, 30%圧延 後および 99% 圧延後の内部組織観察結果を Fig. 1 に示す. Fig. 1a は圧延前の試料から得られた明視 野像と回折図形である.結晶粒は数十µm と大き く, また回折図形によりβ相単相であることがわ かった.これより、この合金のマルテンサイト変 態開始温度(Ms)は室温以下であることがわかる. 一方で Fig. 1b に示した 30% 圧延材の組織には, 小 さなプレート状の組織が数多く観察された. 回折 図形にはリング状のβ相からの回折スポットに加 え, 白矢印で示したようにα"マルテンサイト相か らの回折スポットがみられ、プレート状組織が応 力によって誘起されたマルテンサイト相であるこ とがわかった. 合金の M。が室温に近い場合は, マルテンサイト相の誘起応力が低いため, β相の すべり応力よりもマルテンサイト相の誘起応力が 低ければ、応力を負荷した際にマルテンサイト相 が応力誘起される. これより, Ti-18Zr-15Nb 合金 は, 圧延の際にマルテンサイト相が応力誘起し, マルテンサイト相の変形が生じていることがわか った.また、特記すべきことは、マルテンサイト プレートの内部にさらに小さなプレートの導入が みられ、プレート界面で結晶が分断されることで 結晶粒の微細化が生じていることである. Fig. 1c には99%圧延材の組織を示しており、結晶粒径が 20 nm 程度のナノ組織の形成がみられる. 回折図 形が完全なリング状となっていることから、微細

Fig. 1 (a) 圧延前, (b) 30% 圧延後, (c) 99% 圧延後における
Ti-18Zr-15Nb 合金の明視野像と回折図形.

な結晶粒が様々な方位を向いていることが確認で きる.

Fig. 2 には、さらに Nb 濃度の低くβ相が不安定 な Ti-18Zr-12Nb 合金の圧延過程における内部組織 を示す. Fig. 2a は圧延前の組織である. プレート 状組織がみられ、回折図形からこの合金は室温で α"マルテンサイト相単相であることがわかった. これより、この合金の *M*s が室温以上であること がわかり、Nb 濃度の低下が *M*s の上昇をもたらし たことがわかる. Fig. 2b には 30%圧延を施した試 料の組織を示す. 太いマルテンサイトプレートの 内部に細かいマルテンサイトプレートの導入が観 察される. Fig. 2c に示した 99% 圧延材には, ナノ 組織の形成が確認でき,回折図形にはリングパタ ーンがみられた.以上のことから,マルテンサイ ト相での変形,すなわちプレート内部にさらに小 さなプレートが導入されていく過程の繰り返しに よって,ナノ組織化が生じているものと考えられ る.以前の研究[1]において,Ti-18Zr-18Nb 合金の 圧延後には,ナノ組織の代わりに高密度の転位を 含む大きな結晶粒組織が観察されたが,これは Nb 濃度が高いために *M*s が室温に比べてはるかに低 く,マルテンサイト相の誘起応力がβ相のすべり 応力以上であることで,圧延の際にβ相のすべり 変形のみが生じたことが原因であると考えられる.

Fig. 2 (a) 圧延前, (b) 30% 圧延後, (c) 99% 圧延後における Ti-18Zr-12Nb 合金の明視野像と回折図形.

以上より、ナノ組織化の条件は、*M*_sが室温以上 もしくは室温に近く、圧延の際にマルテンサイト 相での変形が生じることであるとわかった.

3.2 ナノ組織が合金強度に及ぼす影響

ナノ組織が合金強度に及ぼす影響を調べるため, 99%圧延を施した Ti-18Zr-(12~18)Nb 合金に対し, 室温において引張破断試験を行った. Fig. 3 に各 合金の応力-歪み曲線を示す. 合金の破断強度は Nb 濃度により大きく異なることがわかる. Ti-18Zr-16Nb および 17Nb 合金は 1000 MPa を超え る高強度を示した. また, 合金のヤング率も Nb 濃度によって大きく異なっており, Nb 濃度が低い 合金が低いヤング率を有していることがわかる.

Fig. 4に破断強度とヤング率のNb濃度依存性を まとめた. ヤング率は, Fig. 3の応力-歪み曲線に おける 0% 歪み付近の傾きから求めた. Ti-18Zr-18Nb 合金に比べ Ti-18Zr-16Nb 合金で高強 度が得られたのは, ナノ組織の形成による高強度 化のためである[1]. 一方で, Fig. 1c および Fig. 2c に示したように, Ti-18Zr-15Nb および Ti-18Zr-12Nb 合金においても同様のナノ組織が得 られたが, Nb 濃度の低い合金ほど,強度が低いこ

Fig. 3 Ti-18Zr-(12~18)Nb 合金 99% 圧延材の室温における引張破 断試験結果.

Fig. 4 Ti-18Zr-(12~18)Nb 合金 99% 圧延材における破断強度とヤ ング率の Nb 濃度依存性.

とがわかった. 合金のヤング率に注目すると, Nb 濃度の低下に伴いヤング率は低下していき, Ti-18Zr-13Nb 合金で最低値を示した後, Ti-18Zr-12Nb 合金において僅かに増加した. 一般 的に,低いヤング率を持つ合金は原子間の結合力 が弱いため低い応力で破断する. そのため, ナノ 組織を有する Ti-18Zr-(12~16)Nb 合金においても, ヤング率の低下に伴い破断強度の低下がみられる という結果となった.

Nb 濃度の低下に伴いヤング率が低下した原因 としては,以下の二点が考えられる.まず一つ目 としては格子の不安定性によるヤング率低下であ る. これまでにβ型 Ti 合金において, M。に近い 温度ではβ相の bcc 格子に軟化が生じ, ヤング率が 低くなることが報告されている[3,4]. Ti-18Zr-(12~18)Nb 合金においては Ti-18Zr-13Nb 合 金の*M*。が最も室温に近いことがわかっており[5], これにより室温ではTi-18Zr-13Nb合金において最 も低いヤング率を示したと考えられる (Fig. 4). ヤング率が Nb 濃度によって異なる原因の二つ目 としては, α"マルテンサイト相の体積率が Nb 濃 度によって異なることが考えられる.Nb 濃度が低 い合金ほどマルテンサイト相が室温において安定 となるため、低 Nb 濃度の合金はマルテンサイト 相の体積率が高いと考えられる. このようなβ相 とα"相の体積率の違いが、ヤング率の Nb 濃度依 存性をもたらしている可能性が考えられるが、こ れにはさらなる検討が必要である.

以上の結果より、ナノ組織形成による合金強度 の上昇を図る場合、*M*sが室温付近でマルテンサイ ト相での変形によるナノ組織を有する合金のうち、 β安定化元素濃度(Nb濃度)の高い合金において ヤング率が高く、高強度が得られるということが わかった.この条件を考慮し、合金組成および相 安定性を調整することにより、様々なTi合金の高 強度化を実現できると考えられる.

4. 結言

Nb 濃度を変化させ相安定性を変化させた Ti-18Zr-(12~18)Nb (at.%)合金において, 圧延によ るナノ組織の形成条件と, ナノ組織が合金強度に 及ぼす影響を調べ, 以下の結論を得た.

- (1) 圧延過程の組織を観察した結果, M_sが室温付 近でマルテンサイト相の変形が生じることが ナノ組織化の条件であることがわかった.ま た,微細なマルテンサイトプレートの導入に よる結晶の分断が,ナノ組織形成につながっ ていることがわかった.
- (2) 99%圧延材に対し引張試験を行った結果,ナ ノ組織は合金強度を上昇させるが,Nb 濃度が 低い合金ではヤング率が低く,合金強度も低 いことがわかった.そのため,ナノ組織を有 する組成のうち,Nb 濃度が高い組成において 最も高い強度を示すことがわかった.

参考文献

[1] H. Tobe, H.Y. Kim, S. Miyazaki, Mater. Trans. 50 (2009) 2721-2725.

[2] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 54 (2006) 2419–2429.

[3] H. Matsumoto, S. Watanabe, S. Hanada, Mater. Trans. 46 (2005) 1070-1078.

[4] T. Inamura, H. Hosoda, K. Wakashima, S. Miyazaki, Mater. Trans. 46 (2005) 1597-1603.

[5] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Mater. Trans. 50 (2009) 2726-2730.