B8 Cu-Cr-Zr 合金のクリープ疲労におけるひずみ量の影響

堀恭暢(早稲田大学大学院),原田隆義(東京大学),

佐藤英一(宇宙航空研究開発機構),森野美樹(早稲田大学)

Yukinobu Hori(Graduate School of Waseda University), Takayoshi Harata(University of Tokyo),

Eiichi Sato(Japan Aerospace Exploration Agency), Yoshiki Morino(Waseda University)

1. 諸言

宇宙航空研究開発機構(JAXA)では、ロケット エンジンの信頼性向上および低コスト化を実現 すべく、燃料に液体水素、酸化剤に液体酸素を用 いた次世代ロケットエンジンの研究開発を実施 している[1].

液体ロケットエンジン燃焼室内部では高温・高圧 の燃焼ガスが発生するため、内筒には熱伝導率の 良い Cu-Cr-Zr 銅合金(Cu-0.7Cr-0.09Zr(mass%))が 用いられ、この内筒に設けられた冷却溝に極低温 の液体水素を流すことで冷却が行われる.この冷 却溝壁面(リガメント)は 1mm 程度の厚さであり、 燃焼室側は 3000K の燃焼ガス、冷却溝側は 20K の液体水素に曝されることとなるため激しい温 度勾配が発生し、過大な熱ひずみが発生する.そ の結果、実機燃焼試験において燃焼試験 20 サイ クル程度で燃焼室壁面にクラックが発生したこ とがあり、ロケットエンジンの信頼性を脅かす問 題となっている.

JAXA 情報・計算工学センターで燃焼室の3 次元 有限要素法解析が実施され,実機運転中における 燃焼室内筒の銅合金の負荷環境が明らかになっ ている[2]. き裂発生点における燃焼 1 サイクル の温度,応力,ひずみの時間履歴を Fig.1 に示す. 運転開始時,終了時の温度変化に起因した-2.2% ~1% までの低サイクル疲労と,定常燃焼中に進 行する応力一定のクリープ変形がその特徴であ る.この解析結果より,低サイクル疲労とクリー プという二つの損傷モードが重畳することで損 傷が早期に進展することが示唆される.

本研究ではクリープ疲労試験および金属組織の

観察により、Cu-Cr-Zr 合金のクリープ疲労中の損傷過程を検討する.

Fig.1 FEM 解析による温度、応力、ひずみ時間履歴

2. 材料試験

2.1 クリープ疲労試験

FEM 解析結果[2]をもとに応力保持型クリープ疲労試験を実施した. Fig.2 にひずみの全時間履歴と 各サイクルの応力保持中のクリープ曲線を一部 抜き出して示す.

試験片は 18 サイクル目の応力保持中に破断し, クリープ部分の累積時間は約 5000 秒であった. クリープ疲労試験で材料の寿命は,単純疲労と比 較して 1/5,単純クリープと比較して 1/30 と著し く短くなっている.

ひずみ履歴中のクリープ部分に注目すると各サ イクルで遷移クリープが発現している.また,サ イクル数の増加に伴い応力保持中のクリープ量 が増加しており,特に破断直前の数サイクルでは 顕著にクリープ量が増加していることがわかる. 以上のように毎サイクル発現する遷移クリープ により損傷が累積し寿命が低下するものと考え られる.

2.2 圧縮付加クリープ試験

遷移クリープの発現機構を検討するために引張 クリープ中に弾性域から塑性域まで変化させた 圧縮応力を付加させる試験を行った.この試験の 応力時間履歴及び各サイクルのクリープ曲線を Fig.3 に示す.これより塑性域までの圧縮を加えた 直後にのみ遷移クリープが発現することが分か る.

また Fig.3 とは逆方向の塑性域までの引張と圧縮 保持クリープを繰り返す試験でも毎サイクルで 遷移クリープの発現が見られた.このことから遷 移クリープの発現はクリープ直前の逆方向への 塑性変形に起因することが明らかになった.

Fig.2 クリープ疲労試験の全ひずみ履歴とクリープ曲線

Fig.3 圧縮付加クリープ試験の全応力履歴とクリープ曲線

3. 組織観察

3.1 KAM MAP

圧縮付加クリープ試験においてクリープ終了時 と圧縮終了時の途中止め試験片を用いて, SEM-EBSD 法により測定した結晶方位から Kernel Average Misorientation(KAM) に基づく Map を作成した. KAM 値は粒内の幾何学的に必要な 転位(GN 転位) の堆積を示す. 作製された KAM Map は Fig.4 のようになる. 図中の青く示された 部分に転位が堆積していることが示されている. Fig.4(a)ではクリープ終了時にはクリープ中に形 成された転位のセル組織が確認できるが, Fig.4(b) ではその後の圧縮によりセル組織が破壊されて いると考えられる.

3.2 断面観察

Fig.5 にクリープ疲労試験,単純疲労試験及び単純 クリープ試験破断材の断面の光学顕微鏡による 観察結果を示す.

クリープ疲労試験で発生した主き裂近傍には単 純クリープ試験破断材で見られるような合金粒 子の周囲や粒界三重点においてキャビティが多 く観察されたが,主き裂は.一方,単純疲労試験 破断材では粒界に沿ったクラックが観察され,キ ャビティの発生は確認されなかった.

以上の観察結果から、クリープ疲労試験では応力 保持中にキャビティが発生・成長し、キャビティ の連結や繰り返し負荷によりクラックが成長す ることで粒界破断に至るものと考えられる.

Fig.4 圧縮付加クリープ試験片 KAM Mapa) クリープ終了時 b) 圧縮時

Fig.5 破断材断面観察 (a) 単純疲労 (b) 単純クリープ (c) クリープ疲労

4. 結言

・Cu-Cr-Zr 系銅合金における応力保持型クリープ 疲労ではクリープと疲労の相互作用により、従来 加算的に推測されてきた以上の損傷を受けてい る.

・これは疲労中の圧縮塑性変形により発現する遷 移クリープの積み重ねによるものと考えられる. ・KAM Map から引張クリープ中に形成された転 位のセル組織が圧縮により破壊されていること が観察された.これにより可動転位が増加し毎サ イクルで遷移クリープが発現したと考えられる. ・サイクル中のクリープ時に合金粒子界面周辺や 粒界三重点でのキャビティが発生する.

・クリープ中に発生したキャビティやクラックが サイクルを重ねていくことで連結し主き裂に成 長していくと考えられる.

参考文献

- [1] Kurosu A., et. al., AIAA2008-4665 (2008)
- [2] 西元美希他, 第 21 回計算力学講演会講演論 文集 (2008)