多層化した固体推進薬を用いた化学ロケットの燃焼特性に関する研究

阿部宗生, 森田貴和(東海大学工学部航空宇宙学科)

Study on Combustion Characteristics of Chemical Rockets with Multi-layered Grain

Hiroki ABE and Takakazu MORITA

(Dept. of Aeronautics and Astronautics, School of Engineering, Tokai University)

Abstract

In order to improve the combustion efficiency by controlling O/F shift of hybrid rockets and reusability of solid rockets, the authors conducted the combustion experiments for the motors which have multi-layered grain with different composition for each layer. In this study, unsaturated polyester resin was used as a fuel, and gaseous oxygen and ammonium perchlorate were used as oxidizer. As a result, non-steady combustion characteristics during the transition between adjacent layers were obtained.

1. 緒言

現在, ハイブリッドロケットは構造的な簡素さ, 安 全性、低コスト等の利点から液体ロケットや固体ロ ケットに代わる新たなロケットシステムとして注目 されており,研究が進められている.しかしながら半 世紀以上も研究がなされているにも関わらず,いま だ実用化に至っていない.原因としては、低い燃料後 退速度,低い燃焼効率,振動燃焼の発生などが挙げら れる.本来,ハイブリッドロケットは炭化水素系燃料 と酸化剤を利用し、適切な酸燃比を維持できれば液 体ロケットと同等の比推力が得られると考えられて いる.しかし燃焼が進むにつれ燃料ポート径が増大 し、量論混合比から外れてしまう.これを O/F シフ トと呼ぶ. このことにより燃焼効率が低下してしま う. 近年では,酸化剤流に旋回を加えて燃焼室に供給 する方法が注目され、これによって燃料後退速度の 増加, 燃焼効率の向上が図れ, さらにその旋回の強さ を変化させることで推進剤の酸燃比を制御すること ができ、エンジン性能の向上に有効な一つの手段で あると考えられている.一方,旋回を加えた上流側で は燃料が抉れていくため、軸方向の燃料後退速度の 不均一さが著しく,推進性能の評価および予測が難 しくなっている. そこで本研究では 2 つの研究目的 を設けた.1つ目はハイブリッドロケットシステム特 有の O/F シフトの低減である. ハイブリッドロケッ トは燃料に自燃性が無く,安全に運用できる一方で, 推力や酸燃比を直接制御することが困難である. そ のことが原因で酸燃比が燃焼中に変化し, O/F シフト が発生する. そこで, 初期燃焼時のポートに燃料後退 速度の低い燃料を用いて,燃焼が進むにつれ燃料後 退速度の高い燃料に遷移させ, O/F シフトの低減を試 みた. そしてその過程を実験的に測定し, 遷移してい く速度と発生する燃焼振動の周波数特性について調 べた.2つ目は、本研究のコンセプトを生かした「再 使用型固体ロケット」の提案と実現可能性に関する 初期検討である. ロケットの再使用化を行うことは 輸送コストを大幅に低減することができ、少ない例

ではあるが以前から行われてきた. ロケットの再使 用という面で最も有名なのが有翼宇宙船や固体ブー スタの再使用化を行ったスペースシャトルである. しかし、再整備等の費用が問題となったためすでに 退役している. 現在は Space X 社の Falcon 9 や Virgin Galactic 社の Space Ship 2 などが再使用の例としてあ げられる.これらの再使用型ロケットの例では、一般 的に液体ロケットエンジンを使用している.一方,固 体ロケットにおける再使用化の試みはほとんどなさ れていない.というのも固体ロケットの特徴として, 燃焼の停止や推力の制御が困難であるため、固体ロ ケット単体での着陸は困難だからである.ただし,固 体ロケットは大推力が容易に得られるので、ブース タ,または1段目のエンジンとして有用であり、そ の代わりに液体ロケットを使用すると、密度が低い ため大型化が避けられない. 広い射場や警戒区域を 設定しにくい我が国では、固体ロケットの再使用化 が向いている. そこでグレインの内側に固体推進薬 を用い, その外周に固体燃料を充填し, 上昇時には固 体推進薬を用い(固体ロケットモード),帰還時には 固体燃料を用いる (ハイブリッドロケットモード) 新 たなロケットシステムを考案した.本研究では、H3 ロケット用の固体ロケットブースタである SRB-3 を モデルとして,酸化剤とその供給方法に応じたハイ ブリッドロケットモードでの推力の計算を行い,実 現可能性について考察した.

2. 実験装置

実験で用いた燃焼器を図 1 およびその概略図を図 2 に示す.この燃焼器では円筒型の燃料を取り付ける. 実験は酸化剤として気体酸素 GOX と過塩素酸アン モニウム AP (カーリットホールディング株式会社) を用いた.本実験で用いた燃料過多推進薬は平均粒 径 200 µm と 50 µm のAPを 1:1 の割合で混合 し,燃料兼バインダとして不飽和ポリエステル樹脂 UP を用いて成型した.

Fig.1 Experimental setup.

本実験では、燃料カートリッジには全長 70mm,内 径 33mm,肉厚 6mm のアクリルパイプを用い、燃料 の第1層目に単体の UP,2層目に UP に AP を含有 した(AP/UP=10/90)燃料過多推進薬を用いた2層の 燃料を製作した.酸化剤供給系および点火系は、プロ グラマブルロジックコントローラ(PLC)により制御 し、燃焼実験を行った.

Fig.3 Propellant grain with two layers.

燃料	[-]	UP (不飽和ポリエステル樹脂)
酸化剤	[-]	GOX, AP(過塩素酸アンモニウム)
ノズルスロート径	[mm]	8
オリフィス径	[mm]	2.286
ポート径(1層目)	[mm]	19.5
ポート径(2層目)	[mm]	25.5
燃料外径	[mm]	32.8
燃料長さ	[mm]	60
燃料カートリッジ長さ	[mm]	70

3. 実験結果・考察

3.1 UP 単体と AP を含有した UP の比推力特性

実験条件に合わせて NASA-CEA を使い,燃料単体 および燃料過多推進薬の O/F に対する比推力*I_{sp}の*計 算値を比較したものを図 2 に示す.

Fig.4 Effect of O/F on the specific impulse of the hybrid rockets.

Table 2 Experimental results of the GOX/UP and GOX/AP /UP hybrids.

		GOX/UP	GOX/AP/UP
fuel	[-]	UP	UP
AP	[%]	0	10
D_t	[mm]	8	8
L	[mm]	58.5	60
\bar{p}_c	[MPa-A]	0.219	0.280
ŕ	[mm/s]	0.349	0.506
\bar{p}_j	[MPa-A]	0.692	0.779
G_{OX}	$[kg/m^2 \cdot s]$	20.16	21.14
0/F	[-]	3.86	2.90
M_{f0}	[g]	110.84	102.31
M _{fb}	[g]	105.14	92.14
A_{p0}	[mm]	19.4	19.65
и	[m/s]	6.72	5.49
γ	[-]	1.1178	1.1137
М	[g/mol]	31.404	30.215
T_f	[K]	2910.16	3051.76
С*	[m/s]	1361.8	1397.7
c_{th}^*	[m/s]	1389.3	1452.6
η_{c^*}	[%]	98.0	96.2
L^*	[m]	0.8	0.8
$ au_r$	[s]	0.00152	0.00152
ILFI	[Hz]	530.1	440.5

上記において,気体酸素の消費量は一定として AP の 量を変化させて計算を行った.このとき燃料過多推 進薬の O/F は以下のように定義した.

$$O/F = \frac{\Delta M_{ox} + \Delta M_{AP}}{\Delta M_f} \tag{1}$$

図4の青の点線は、燃料過多推進薬単層のO/Fの 実験値を示しており、オレンジ色の点線は燃料単層 でのそれを示している.これらのO/F値の相違は、 以下の実験的事実に依る.初期ポート径を19mmと して燃料単層と燃料過多推進薬単層の2つの場合で それぞれ同じガス酸素流量を加えて燃焼実験を行っ た所,燃料過多推進薬の方が燃料後退速度よりも大きくなったため,全燃料消費量が燃料単層の場合よりも大きくなった.その結果,燃料過多推進薬の方が燃料単層よりも O/F が小さくなっている.

3.2 燃料層間の遷移速度

本実験で得られた圧力履歴とその解析結果を以下 に示す.

Fig.5 Time history of the combustion chamber pressure.

Fig.6 Magnification of the pressure transition from the solid fuel to the fuel-rich solid propellant.

	No. 1	No. 2	No. 3
L [mm]	60.2	60.3	60.2
Δt_t [s]	1.744	1.445	2.543
\dot{r}_t [mm/s]	34.52	41.73	23.67
\bar{p}_c [MPa-A]	0.273	0.293	0.281
G_{OX} [kg/(m ² · s)]	15.23	18.15	12.44
<i>c</i> * [m/s]	1433.5	1382.9	1398.7

図6のように圧力履歴から遷移時間を Δt_t , 燃料長さ E L, 層間の遷移速度 \dot{r}_t を以下のように定義した.

$$\dot{r}_t = \frac{L}{\Delta t_t} \tag{2}$$

上式からたを求め,酸化剤質量流束に対してプロット した両対数グラフを図7に示す.

Fig.7 Transition speed between two adjacent layers.

この実験結果から層間の遷移速度は次式のように評価することができ、図7に直線で表した.

$$\dot{r}_t = 0.55 G_{0X}^{1.5} \tag{3}$$

3.3 層間の遷移時の周波数解析結果

初めに、インジェクターからガス酸素を供給した 時の UP 単層及び燃料過多推進薬単層の周波数解析 の結果をそれぞれ以下に示す.

Fig.8 Short-time Fourier transform (UP).

次に,遷移部分(図6)の周波数解析の結果を以下に 示す.

この結果より、いずれの周波数解析の結果から300~400 [Hz] 周辺に発生が確認できる ILFI (Intrinsic Low Frequency Instabilities) とスペクトルの強度の大小はあるが10~30 [Hz] 周辺に断続的に発生している低周波燃焼不安定の2つに分けられる.図8と図9を比較すると,燃料過多推進薬の方が2つのモード共、不安定性が高いことが分かる.特に、低周波燃焼不安定については燃料過多推進薬の方が圧力応答関数の効果を含んでいる分だけ不安定性が高くなっていると思われる.図10を見ると、UPの層から燃料過多推進薬の層への遷移点が図中で大体t = 2secであるが、この遷移をした後で不安定性が増大している様子が見られる.

次に, ILFI の周波数について考察する. UP 単層 お よび AP/UP 系固体推進薬(AP/UP=10/90) 単層の実 験結果に対し, 次の Karabeyoglu の式を使って ILFI の周波数を求めることができる.

$$f_b = 0.234 \left(2 + \frac{1}{O/F}\right) \frac{G_{OX} R T_{av}}{P_c L} \approx 345 \text{ [Hz]}$$
(4)

この結果と実験結果を比較すると,300~400 [Hz] 付 近の周波数帯が ILFI であると考えられる.また,UP 単層での ILFI よりも燃料過多推進薬単層の方が ILFI および低周波燃焼不安定のスペクトルが強くなって いることが分かる.一方で,2層の推進薬の実験結果 に対する周波数解析(図 10)で,UP 単体の層から燃 料過多推進薬の層に遷移する過程では,低周波不安 定のスペクトルは燃料過多推進薬と同程度の強さが 出ているのにも関わらず,ILFI のスペクトルは UP 単 体と同程度の強さしか出ていない.これは燃焼が層 間の遷移領域に入ると,軸方向に燃料の燃焼特性が 不均一になり,境界層内の熱的な遅れに伴う振動が 発達しにくくなることにより ILFI が小さくなったと

考えられる.

次に,低周波燃焼不安定を求めるにあたり,線形安定性解析によるとその増幅係数 α および角振動数 ω は,推進薬のガス滞留時間を τ_r ,固体推進薬の質量流量に対する噴射した酸化剤の質量流量の比を φ ,燃焼応答関数を R_g ,圧力応答関数を R_p ,燃料後退速度式に用いる mass flux exponent εm ,圧力指数 εn として次式で表せる.

$$(1 + \tau_r \alpha)^2 + (\tau_r \omega)^2 = \frac{1}{4(\varphi + 1)^2} |R_G|^2 + |R_p|^2$$

$$\approx \frac{1}{4(\varphi + 1)^2} m^2 + n^2$$
(5)

これについて計算した結果を図 11 に示す.本研究に おいて圧力指数は不明であるため,圧力指数をn = 0, 0.1,0.2の場合について計算した.ここで,n = 0は自 燃性を持たない固体燃料の場合に相当する.

Fig.11 Stability map of the low-frequency combustion instability in hybrid rocket motors.

図 11 より, 燃料過多推進薬の時 (n > 0) の方が固体 燃料の時 (n = 0) より不安定性が増すことがわかる. この結果から、低周波燃焼不安定は ILFI とは異なり 境界層全体の過程に強く依存するものではないので, 本研究で取り扱う遷移時期における軸方向の推進薬 の燃焼特性の不均一性にあまり影響を受けないと思 われる.したがって,部分的に燃料過多推進薬領域に 遷移した時の実験データにおいて,低周波燃焼不安 定のスペクトルは燃料過多推進薬単層の場合と同程 度の強さになったと考えられる.

3.4 再使用型固体ロケットのハイブリッドモードに おける推力計算

固体ロケットの再使用化をするにあたり、グレイ ンは大きく分けてブースタ用の固体推進薬部分とラ ンディング用の固体燃料部分に分けられる.図12に 示すように、上昇時には固体ロケットモード、帰還時 にはハイブリッドロケットモードとして (a) から (b) へと順次機能する.

(b) Hybrid rocket mode

Fig. 12 Reusable solid rocket.

Fig. 13 Flight sequence of a reusable solid rocket.

再使用型固体ロケットの飛行シーケンスを次図に示 す. 初めに固体ロケットで上昇し, 固体推進薬がなく なるとともに燃焼が停止する.慣性飛行後,機首下げ の制御後再突入を行い、滑空によって射点近傍まで の帰還誘導を行う.その後,機体が地表と垂直になる ように姿勢を回転し、着火・スロットリングをするこ とにより減速する.ここで、参考文献(3)より、速 度 1m/s の等速降下状態にした後に機体に取り付け たランディング脚を用いて着陸する.

Table 4 Design data of SRB-3.			
M_0	75.5	ton	
M_p	66.8	ton	
W	8.7	ton	
F_{v}	2130	kN	
fuel	HTPB	-	
$ ho_f$	900	kg/m ³	
L_f	14	m	
D_p	1.8	m	
A_b	79.2	m ²	
D_t	0.39	m	
γ	1.2	-	
W_f	28	g/mol	
η_{C^*}	95	%	
С*	1700	m/s	

T11 / D

推力の計算にあたって初期条件は表 4 のパラメータ と値を用い,酸化剤とその供給方法については表5に 示す. この時次期基幹ロケットの H-3 の補助ブース タをモデルに計算を行ったが, 推力方向制御(Thrust Vector Control [TVC]) 機構による重量, 第2段モータ との分離機構重量等は数値未定のため省略している.

Table 5 Thrust-to-weight ratio of hybrid rockets.

	GOX	N ₂ O
	Swirl	Axial
\dot{M}_{OX} [kg/s]	20~60	550~590
\dot{r} [mm/s]	0.14~0.35	1.14~1.16
<i>M</i> _f [kg/s]	9.93~32.14	631~673
0/F [-]	2.0~2.4	6.8~7.1
$p_{c,v}$ [MPa]	0.4~1.15	8.98~9.57
T [ton]	5.9~16.8	131~140
T/W [-]	0.68~1.93	15.1~16.1

この時、旋回流の時の燃料後退速度は軸流の時の燃 料後退速度を3倍したものとした. 軸流の時の燃料 後退速度は参考文献(1),(2)の式を用いた.その結 果を書き出すと以下のようになる.

$$\dot{r}_{\rm GOX} = 0.0081 G_{OX}^{0.8472} \tag{6}$$

$$\dot{r}_{\rm N_2O} = 0.198G_{OX}^{0.325} \tag{7}$$

また,着陸を行うにあたって推力重量比(機体の着陸 時の質量と着陸時の推力の比)によって着陸時の速 度や酸化剤,燃料の搭載量,再着火のタイミング等の 設計で必要になってくる.ここで参考文献(3)より,

RVT (Reusable Vehicle Testing) における着陸時の推 力重量比が T/W = 1.5であり、この推力重量比と先 ほど計算で得られた量論混合比の観点から GOX を 用いた酸化剤旋回流型ハイブリッドロケットで実現 の可能性が見られた.

4. 結言

本研究では、多層化した固体燃料を用いたハイブ リッドロケットにおいて燃焼性能の異なる燃料の遷 移する速度を求め、またその前後で発生する圧力履 歴に対する周波数特性の解析を行った.その結果、遷 移速度が酸化剤質量流束に依存する表式が得られた. また低周波燃焼不安定が燃料単層時、燃料過多推進 薬単層時および両者を使った遷移時のいずれでも発 生していることが実験的に確認できた.特に、遷移時 や、燃料過多推進薬単体の燃焼時では低周波域のス ペクトルが強くなっていることが短時間フーリエ変 換の結果より確認された.

また、本研究では固体ロケットの再使用化に向け、 グレインのポート側に固体推進薬、外周側に固体燃 料を配した 2 層のグレインを持つ再使用ロケットを 提案した.これは、上昇時には固体ロケット、帰還・ 着陸時にはハイブリッドロケットとして機能するも のである.また、ハイブリッドロケットとして機能するも のである.また、ハイブリッドロケットモードについ ての簡易的な推力計算を行った.それにより SRB-3 をモデルとした場合は、酸化剤の LOX を気化させて GOX を発生し、インジェクターによりそれを旋回流 にして燃焼室へ供給するタイプのエンジンとした時 に実現可能性が高い結果を得ることができた.

参考文献

- Jianxin, H. et al, "Experimental Investigation of Regression Rate in Hydroxyl-terminatedpolybutadiene Gaseous-oxygen Hybrid Rocket Motors", *Trans. Japan Soc. Aero. Space Sci.* Vol. 55, No. 6 (2012), pp. 341-348.
- (2) Pastrone, D., "Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines", *International Journal of Aerospace Engineering*, Vol. 2012, Article ID 649753, http://dx.doi.org/10.1155/2012/649753.
- (3) 川戸博史,他,"再使用型ロケット開発に向けた 取り組み状況について Status of Research and Development on Reusable Launch Vehicle", 三菱重 工技報, Vol. 51, No. 4 (2014).
- (4) 松木彩,他,"ワックス系燃料ハイブリッドロケットの定常燃焼に関する研究",平成 23 年度宇宙輸送シンポジウム,STCP-2011-39 (2012).
- (5) Arif Karabeyoglu, "Fundamentals of Hybrid Rocket Combustion and Propulsion Chapter 9 Combustion Instability and Transient Behavior in Hybrid Rocket Motors", American Institute of Aeronautics and Astronautics, Vol. 218