Design Study of High Mach Integrated Control Experiment Vehicle (HIMICO)

佐藤哲也*1、田口秀之*2、土屋武司*3、津江光洋*3、藤川貴弘*4

*1 早稲田大学基幹理工学部、*2 宇宙航空研究開発機構航空本部、*3 東京大学大学院工学系研究科、*4 九州工業大学大学院工学系研究科

1. はじめに

JAXA では、将来の再使用型スペースプレーンお よび極超音速輸送機用エンジンとして、地上静止状 態からマッハ数 5 まで連続的に作動する予冷ター ボジェットの開発研究を進めている[1] [2]。今後は 飛行実験によって、機体/推進統合制御技術、巡航 技術、加速技術を段階的に実証し、大陸間輸送の高 速化に寄与する極超音速旅客機の実用化を目指す

(図 1)。極超音速統合制御実験(HIMICO: High Mach Integrated Control Experiment) は、その第一段 階に相当し、運用方法が確立している観測ロケット S520 を活用して、比較的短期間で低コストに実現 できる極超音速飛行実験により、機体/推進統合制 御技術の主要部分を実証することを目的とする。 HIMICO によって、我が国独自の FTB 技術の確立、 航空宇宙分野(大型システム)の人材育成、教育等 の効果も期待される。ここ5年ほどかけて、要素実 験と数値解析を実施し、軌道設計、空力設計、構造 設計、機器の選定、艤装等を検討し、成立性を確認 した[3]。2018 年 8 月に実施された JAXA 宇宙科学 研究所、観測ロケット専門委員会の指摘により、本 実験の技術的な困難さを低減するために飛行実験 を2段階に分けて行うこととなった。第1号機では、 エンジンを作動させず、実験機の引き起こし飛行制御 と安全性を確認することを目的とし、さらには、理学 ミッションとの相乗りを検討することとなった。第1 号機の実験結果に基づいて、これまで提案してきたエ ンジンを作動させる第2号機の実験に進むことをとな った。本講演では、第1号機の設計検討結果について 報告する。

2. HIMICO1号機の設計検討状況

図2にHIMICO第1号機の実験概要図を示す。観 測ロケットS520のノーズフェアリング内部に全長 1.2m程度の実験機を搭載し、発射する。ヨーヨー デスピナーによりロケットのロール回転を低減し たあとノーズコーンを開頭し、まず理学ミッション を実施する。その後、サイドジェットで姿勢制御し た後(オプション)に実験機を分離する。実験機は 自由落下により加速し、大気圏再突入後に空力操舵 によって引き起こされ、予定していた軌道に投入さ れ、着水する。第1号機においては、実験機の分離、 データ通信、引き起こし制御の確認をすることを目 的とする。

第1号機は、理学ミッションとの相乗りミッシ ョンであるため、サイズ、重量および軌道における 制約がある。軌道については、高度100km以上の 領域をダウンレンジ400km以上で飛行するという 理学ミッションの条件を満たす必要がある。従来の 提案(第2号機)では、実験機の最適軌道である Mach 4~5、動圧50kPa一定で30秒程度の実験時 間を確保するため、ロケットの射角を小さく(65 度)、全備質量を大きく(2500kg)していたが、第 1号機では射角70度、全備重量2275kgとしMach6 ~8、最大動圧60kPaで高々度を飛行することによ り、理学ミッションと相乗り可能な軌道を見つける ことができた。

図3に実験供試体を示す。HIMICOでは機体内部 の機器の搭載性を考慮し、胴体を円筒形状としてい る。今回はPI部として許容されている全長1.2mに 収めるため胴体部と主翼を短縮した。ラムジェット エンジンは搭載するが、燃焼は行わず、インテーク、 ノズルは固定形状とする。

図1. JAXA における極超音速実験構想

図2. 極超音速統合制御実験(HIMICO)第1号機

図 3. HIMICO 第1号機供試体(単位 mm)

図 4. CFD 解析結果 (等 Mach 線) (図上:機体周囲、図下インテーク内部)

図4に第1号機(プロトタイプ)のCFDによる 解析結果を示す。主流マッハ数は5である。胴体短 縮により先端で発生した衝撃波が垂直尾翼に近く なったため、最新の形状では垂直尾翼を後方に移動 している。また、インテークの先端部が、胴体の膨 張領域に入っているが、インテーク内部の流れを見 る限り問題はない。今後、実際の飛行マッハ数や機 体の姿勢に合わせた解析を実施する予定である。

図5に姿勢制御のシミュレーション結果を示す。 今回の実験では、ロケットから分離したときの姿勢 を制御することが難しいため、その後の空力制御に よって目標とする姿勢角に合わせることを想定し ている。図上は、分離時の姿勢角が80度で、初期 加速度がない場合である。およそ16秒で目標の姿 勢角に制御され背面飛行する。44秒時にロール回 転をすることで、上下を反転している。図下は、分 離時の姿勢角が80度で、初期加速度がある場合(ロ ール0 rad/s、ピッチ3 rad/s、ヨー3 rad/s)を示す。 17秒くらいまでは、動圧がほとんどないためそれ ぞれの姿勢角は振動し、機体が回転しているが、動 圧が上がり始める(およそ0.5 kPa)と目標姿勢角に 制御される。以上、ピッチ、ヨー3 rad/s の範囲内で は、SJ 制御がなくても空力操舵で引き起こし飛行が 可能なことを確認した。

図5. 姿勢制御シミュレーションの例(分離時姿勢角80度) (図上:初期加速度なし、図下:初期加速度あり)

3. まとめ

極超音速統合制御実験機(HIMICO)を相乗りミ ッションに対応させるため、機体全長を短縮した第 1号機の設計検討を実施した。軌道検討、空力検討、 艤装検討、制御シミュレーションにより、目標を達 成できる目処を立てることができた。今後は、詳細 設計を進めていく。

参考文献

[1] Sato, T., Taguchi, H., et . al., "Development study of Mach 6 Turbojet Engine with Air-Precooling, Journal of the British Interplanetary Society," Vol. 58, No. 7/8, pp.231-240 (2005).

 [2] Taguchi, H., et . al., "Mach 4 Experiment of Hypersonic Pre-Cooled Turbojet Engine", 23rd International Symposium on Air Breathing Engines, ISABE-2017-22532 (2017).

[3] 佐藤哲也、田口秀之、土屋武司他、S520 観測ロケットを用いた極超音速統合制御実験(HIMICO)の提案、 観測ロケットシンポジウム 2018 講演集 (2018).