Design and External Drag Evaluation of Air-Intake for Small Pilotless Supersonic Aircraft

山口 凱(室蘭工大・院)・湊 亮二郎(室蘭工大)・伊藤 大貴(室蘭工大・学) Gai Yamaguchi, Ryojiro Minato, Daiki Ito

Abstract : At our university, we are conducting research and development about small pilotless supersonic aircraft (Owashi II) and the GG-ATR engine mounted on the aircraft. Explain evaluating the external drag of air-intake by the wind tunnel testing and CFD analysis and design about diverter-less air-intake aimed at reducing external drag of air-intake of Owashi II.

Keywords: Supersonic Transport, GG-ATR Engine, Air-Intake, Diverter, Wind Tunnel Testing, CFD Analysis

0. 記号の説明

Α	:断面積[m ²]
C_D	:外部抗力係数
D	:抗力[N]
M	:マッハ数
ṁ	:質量流量[kg/s]
Р	:静圧力[Pa]
P_t	:全圧力[Pa]
q	:動圧力[Pa]
S_{wing}	:実機主翼面積[m ²]
V	:速度[m/s]

1. 背景と目的

近年,我が国では次世代型の宇宙輸送システムとして 極超音速輸送機の研究開発が行われている。それらを基盤 技術とする飛行性能を実証するため、本学では小型無人超 音速実験機「オオワシ2号機(オオワシⅡ)」の研究開発が行 われている。同実験機の推進エンジンには、Gas Generator Cycled Air Turbo Ram Engine (GG-ATR エンジン)が想定され ている。

オオワシ II の超音速飛行実現には, 遷音速域での機体の 定量的な外部抗力評価と低減が重要となるが、遷音速域で は衝撃波の発生や境界層の影響により抗力評価や流れの再 現が困難となる。それはインテークに関しても同様であり, ダイバータの有無によってのインテーク性能と外部抗力の 変化の知見が必要となる。そこで、本研究では遷音速域で のエアインテークの外部抗力を定量的に評価する事と、ダ イバータレスインテークによる外部抗力低減効果を確認し, オオワシⅡに検討する事を目的とする。

2 理論と手法

GG-ATR エンジンの超音速インテークは、効率の良い圧 縮機仕事をさせるために、圧力と流量をインテーク出口で 出来るだけ確保しなければならない。そのためには、ディ フューザ内で空気流を亜音速まで減速させる事や境界層を ダイバータで排除することが重要になる。そのインテーク の性能を示すパラメータとして流量捕獲率(MCR)と全圧回 復率(TPR)がある。MCR と TPR は以下の式で表される。

$$MCR = \frac{\dot{m}_{out}}{\dot{m}_{in}} \qquad TPR = \frac{P_{t,out}}{P_{t,air}}$$

MCR はインテーク入口前衛投影面積に流入する流量(添 え字 in)に対する出口流量(添え字 out)の割合である。TPR は主流全圧(添え字 air)に対する出口全圧の割合である。以 上の2式を用いてダイバータの有無によるインテーク性能 の評価と比較を行う。

外部抗力(添え字 ext)の評価は以下の式で行う。

$$D_{ext} = D_{bal} - D_{int} - D_{base}$$

外部抗力は供試体抗力(添え字 bal)から内部抗力(添え字

int)とベース抗力(添え字 base)を差し引いたものとした。 各抗力は以下の式で表される。

> $D_{bal} = D_{I+b} - D_{body}$ $D_{int} = \dot{m}_{out}(V_{in} - V_{out}) + (P_{air} - P_{out})A_{orifice}$ $D_{base} = (P_{air} - P_{base})A_{base}$

供試体抗力はインテークと胴体を合わせた抗力(添え字 I+b)から胴体のみの抗力(添え字 body)を差し引いたものと した。また、内部抗力はエンジンの推力に含まれる抗力で あり,ベース抗力はインテークの外部抗力に不要なイン テークのベース部の抗力である。

以上の式から外部抗力係数を求める事で、インテークの 外部抗力の定量的評価とダイバータレスによる抗力低減効 果を確認する。

結果と考察 3.

今回実機4分の1サイズモデルの縮小模型を使った遷音 速風洞試験と SolidWorks 内の流体解析ツール Flow Simulation を用いた CFD 解析で、ダイバータの有無による インテークの性能と抗力の評価と比較を行った。

遷音速風洞試験

遷音速風洞試験用のモデルを以下に表す。

風洞モデル(ダイバータあり) 図2

図2では、インテークと胴体の間にあるダイバータが境 界層を取り込む事で境界層流入を防いでいる。一方図3は、 ダイバータありではランプの部分が平面であるのに対して、 ダイバータなしの方ではコブ形状となっている。そのコブ 形状により流入してくる境界層を圧縮し、引き裂く事で、 インテーク内への境界層流入を防いでいる。

今回 JAXA/ISAS の遷音速風洞試験場を使用し,風洞試 験を行った。試験マッハ数は遷音速域 M=0.7~1.3 のマッハ スイープとし,供試体抗力,オリフィス上流全圧(添え字 out)を5点,ベース静圧を4点,シュリーレン映像を計測 した。また,インテーク出口にあるオリフィスプレートを 交換する事で,インテークの出口の流量をMCR=0.5~0.9に なるよう調節した。風洞試験の概略図を以下に表す。

図4 風洞試験概略図

図5,6からわかるようにダイバータありのインテークでは、全圧がほとんど低下していないことが分かる。一方ダイバータなしの方では、TPR と MCR がダイバータありと比べて全体的に低下していることから、ダイバータレス化によるインテーク性能の悪化が見られる。またMCR=0.7~0.6にかけて大きな全圧低下が起こる事も分かった。

次に外部抗力の変化を図7,8に表す。外部抗力係数は 外部抗力を主流動圧と主翼面積で割ったものとした。

図7,8よりダイバータありのインテークでは線形的に 抗力が変化していることが分かる。さらに速度の増加に よって抗力増加が生じることが分かる。ダイバータなしの 方では、流量が多い場合は速度による抗力差があまり生じ ないことが分かる。また、実機の遷音速域抗力は C_D=0.05

This document is provided by JAXA.

と推算されていることから、ダイバータレスインテークの 外部抗力は実機の 1/10 程度になっていることが分かる。 その理由について以下で考察した。

CFD 解析結果によるマッハ数分布図を図9に示す。これは主流マッハ数 *M*=1.3, *MCR*=0.9 の計算結果である。

図9 インテーク対称面のマッハ数分布図 (上:ダイバータあり,下:ダイバータなし)

図9よりダイバータありの方ではディフーザ内でほと んど斜め衝撃波が発生していないために、全圧損失がほと んど起こらなかったと推測される。一方、ダイバータなし の方では気流が速い状態であり、衝撃波をディフーザ内に 吸い込んでいる様子がインテーク入口付近を見ると確認で きる。これによりインテーク内の速度の速い主流とランプ の間に速度差が生じ境界層が発生する。その境界層の剥離 がディフーザ内で起こることで、全圧が低下し、それがダ イバータレス化によるインテーク性能の悪化に繋がってい ると考えられる。また、このインテーク性能の悪化はダイ バータレス化による抗力低減効果にも影響してくると考え られる。上図の7,8を見ると全体的にはダイバータレス 化による抗力低減効果が見られる。しかし、設計点近傍 (MCR=0.9 付近)では、ダイバータの有無による抗力の差が ほとんど見られない。これは先ほど説明したインテーク性 能の悪化によることが原因ではないかと考えられる。

この結果からダイバータレスインテークは設計点近傍の 抗力を低減するためにも、インテーク性能向上を目的にラ ンプのコブ形状を再設計する必要があると考えられる。

● CFD 解析

インテーク周りの流れの可視化を行うため, Flow Simulationを用いた CFD 解析を行った。CFD 解析条件を以 下に記す。

解析モデルはダイバータありとなしの2種類のインテー クで行った。計算負荷を軽減するために半裁モデルで計算 した。一様流条件は風洞試験に合わせ、主流マッハ数、静 圧, 静温はそれぞれ 1.3, 54[kPa], 224[K]とした。乱流モデ ルは修正 k-ε であり、乱流境界層にヴァン・ドリースト減 衰関数を用いた修正壁関数を使用している。境界条件はオ リフィス出口静圧を風洞試験時のチョークした状態で合わ せている。また、ダイバータレスモデルの方では、風洞モ デルのディフューザ内にあるピトー管などの形状は、ディ フューザ内流れに影響を与えるものと考え, CFD 解析の 計算モデルにも考慮した。ピトー管は中実とした。計算格 子の生成には Flow Simulation 内にある自動メッシュ作成 ツールを使用してデカルト直交座標型の計算格子を作成し た。格子数はダイバータありで約150万点、ダイバータな しで約 200 万点とした。図 10 のようにダイバータなしの 方では壁面付近の格子を細かくすることで流入する境界層 を計算させた。また、ダイバータありの方では Flow Simulation にあるリファイン機能を使用し、解析途中に格 子をリメッシュすることで、インテーク周りの衝撃波など の計算に必要な格子数を最小限で計算するようにした。

(上:ダイバータあり,下:ダイバータなし)

以上の条件で CFD 解析を行った。解析結果として主流 マッハ数 *M*=1.3, *MCR*=0.9 の全圧分布図とダイバータレス インテークでのインテーク性能の実験値と CFD 解析の比 較を図 11, 12 に示す。

図 11 インテーク対称面の全圧分布図 (上:ダイバータあり,下:ダイバータなし)

図 11 からわかるようにダイバータなしの方では境界層 の剥離がかなり大きくなっていることが分かる。また図 12 から CFD 解析では、その剥離の影響によってインテー ク性能がかなり低下していることが分かる。この結果につ いての考察を以下に記す。

図 13 にインテーク正面での全圧分布図を表す。下図を 見ると、ランプ出口中央の剥離が過剰的であることが分か る。また、ランプ横のインテーク壁面付近では流れの損失 による境界層の流入が大きく、ディフューザー内で大きな 剥離を起こしていることが分かる。これらの結果が図 11, 12 に表されている CFD 解析によるインテーク性能の低下 に影響していると考えられる。

図13 インテーク正面の全圧分布図

実験と CFD 解析の外部抗力係数の比較を図 14 に表す。 図 14 からダイバータ有無共に,抗力の減少傾向は再現で きているが,実験値との差が大きくなっていることが分か る。また,ダイバータなしでは MCR が低くなっている。 この理由としてはダイバータなしでの CFD 解析では境界 層の剥離を過剰に計算しているためにオリフィス出口の流 量が下がり, MCR を下げている可能性がある。

これらの結果からダイバータなしの CFD 解析は境界層 の剥離を過剰に計算してしまうことで、インテーク性能や 外部抗力に大きな誤差を生じさせてしまっていると考えら れる。そのため乱流モデルの変更や格子の細分化など CFD 解析の高精度化を考える必要がある。

4. 結論

本研究で明らかになったことを示す。遷音速域でのイ ンテークの外部抗力を風洞試験や CFD 解析を駆使する事 で定量的に評価することができた。しかし, CFD 解析は 境界層の剥離を過剰に計算してしまうため, 解析の高精度 化が重要になる。

ダイバータレスインテークはインテーク性能が悪化す るために設計点近傍での抗力低減効果が悪くなっている可 能性がある。そのため、さらなる外部抗力低減やインテー ク性能向上のためにダイバータレスインテークの再設計が 必要である。

これらの理由から今後さらなるダイバータレスイン テークの評価と設計の検討を進める必要がある。

5. 参考文献

- I. B.E.L Decker, Y.E Chang [An investigation of study compressible flow through thick orifices]
- II. 松尾一泰「圧縮性流体力学-内部流れの理論と解析」 オーム社
- III. 三木肇「超音速インテークのダイバータレス設計と 空力性能評価」

- IV. 上野篤史,牧野好和,高谷亮太,佐藤一成,磯英雄
 三友俊輝「CFD を援用した小型超音速旅客機のスピレージ抵抗計測」
- V. 渡辺安,村上哲,藤原仁志「超音速インテークの空 力性能に及ぼす側壁形状の影響」