N₂O と DME を推進剤に用いる 0.4N 級二液式推進機の推進剤混合方法による性能の向上 Performance Improvement by Mixing Method of 0.4N Class N₂O/DME Bipropellant Thruster

O浅倉 嵩雅*1, 倉永 敦史*2, 矢野 康之*3, 各務 聡*2 *1宮崎大学大学院工学研究科工学専攻機械・情報系コース *2宮崎大学工学部機械設計システム工学科 *3宮崎大学工学部教育研究支援技術センター

Abstract

This paper describes the performance of a proposed bipropellant thruster using nitrous oxide (N₂O) and dimethyl ether (DME). Conventionally, nitrogen tetroxide and hydrazine are used in thrusters for spacecraft, but requires gas treatment systems in the ground tests due to toxicity and reactivity to materials. Hence, we proposed to apply N₂O and DME to a bipropellant thruster in order to develop a compact and eco-friendly bipropellant thruster. N₂O and DME, which are liquefied gas, are neither toxic nor reactive to materials, and require no gas treatment system in the ground tests. Furthermore, the combustion chamber can be downsized because gaseous injection can eliminate the evaporation time. The application vapor pressures of 6.4 MPa (N₂O) and 0.6 MPa (DME) at 25 °C to self-pressurization would eliminate the necessity of pressurant to simplifies the feeding systems. In this study, a 0.4-N class N₂O/DME bipropellant thruster was prototyped, and tested in a vacuum chamber. The thruster yields combustion chamber pressure of 0.32 MPa, with corresponding C^* efficiency of 79.2 % at O/F = 3.5.

1.序論

現在,低コストかつ短期間での開発が可能な超小型人工 衛星に注目が集まり,その開発に大学やベンチャー企業な どが参入するようになった.打ち上げ件数は,2013年以降, 爆発的に増加する傾向¹⁾にある.また,超小型衛星は従来, ピギーバック方式で打ち上げられてきたが,最近では,超 小型衛星専用のミニロケットの開発が進められ,2018年2 月3日にはJAXAが全長約10mのロケット「SS-5205号 機」による超小型衛星 TRICOM-1Rの打ち上げを成功させ た.このように,超小型衛星の打ち上げの機会は広がって いる.

今後、この超小型衛星がコンステレーション、フォーメ ーションフライトといった複雑なミッションを遂行し、活 躍の場を拡大していくためには、軌道制御や姿勢制御のた めの推進機が必要である.しかしながら、超小型衛星には 重量や容積の制約があり、従来の推進機をそのまま搭載す ることは困難である.そのため、超小型衛星に推進機を搭 載した例は少ない.また、安全性の観点から推進剤には低 毒性が求められる.

従来,四酸化二窒素(NTO)/ヒドラジン(N₂H₄)を推進剤と する二液式推進機が人工衛星に搭載されてきた.しかし, NTO/N₂H₄ は強い毒性を有するため地上試験において排ガ ス処理が必要で安全対策にコストがかかる.さらに,凝固 点は NTO が-11.2 °C, N₂H₄ が 1.4 °C と高く,ヒータ等を用 いて 20 °C 程度で保温する必要があり,推進剤供給には窒 素などの加圧ガスを要することから,構造が複雑になる.

以上の理由により,NTO/N₂H₄を超小型衛星へ適用することは困難である.そのため,無毒で環境適合性に優れた推進剤を用いた,小型かつ簡素な推進機が求められている.

本研究は、無毒で環境適合性に優れた N₂O/DME を推進 剤とする二液式推進機を提案する.これまでの試作評価に より、安定した燃焼が得られたが、 C^* 効率(η_{C^*})は 70%未満 と低い値に留まっていた.そこで、推進剤の混合方法に着 目し、性能の向上を図った.

2.N₂O/DME 二液式推進機^{(2,(3)}

N₂O と DME は共に毒性が皆無で、蒸気圧はそれぞれ 6.4 MPa, 0.6 MPa であることから、自己の蒸気圧による供給が 可能である.よって、窒素等の加圧ガスが不要となり、供 給系を簡素化することが出来る.また、気体として燃焼室 に供給することにより、律速段階である蒸発時間を 0 にで きることから、燃焼室の小型化が可能となる.さらに、金 属等の材料に対する反応性が少ないことや圧力温度調整に より液体として貯蔵できるため貯蔵性に優れている.理論 比推力は NTO/N₂H₄ が 318 s, N₂O/DME が 290 s と遜色な い.以上のように安全性が高く取り扱いが容易な上に,簡 素化と小型化が望めることから,提案する推進機は,超小 型衛星に適合しているといえる.

3.試作した推進機

3.1.試作推進機 本研究では N₂O と DME の混合の促進 により性能の向上を目指し, Figs. 3.1, 3.2 のような推進機 を試作した.

燃焼室内部で推進剤が偏らないように N₂O と DME はそ れぞれ 2 ヶ所の注入口から供給した. N₂O は, 推進機軸方 向に供給し, DME は燃焼室側壁の噴射口から中心に向かっ て噴射した. この構造により, スパークプラグ近傍の DME 濃度を下げ, その下流で N₂O が DME をさらに混合する. このような構造にした理由は, スパークプラグ近傍の DME 質量割合が 20 %以下で燃焼が安定する傾向があったため である^{(4.} すなわち,上流側では点火しやすい O/F にし,下 流で DME を追加して,性能が最大となる O/F にするので ある. なお,点火用のスパークプラグは 60 Hz で繰り返し 作動させ,推進機の各部品間のシールには膨張黒鉛ガスケ ットを用いた.

Fig.3.1. Schematic of prototype thruster.

Fig.3.2. Parts of prototype thruster.

3.2.インジェクタ/燃焼室 試作したインジェクタ/燃焼 室の外観を Figs. 3.3 に,緒言を Table 3.1 に示す.インジェ クタは,燃焼室及びスパークプラグと一体になっており, N₂O はスパークプラグの外周から噴射される.DME は,燃 焼室側壁に設けた 16 個の ϕ 1.0 mmの噴射口から供給した. 噴射口は同一円周上に 90°間隔で 4 個設け,これを 1 組と して 4 組配置している.また,Fig. 3.4 のように推進機の中 心軸に対する噴射角 δ を 75°とし,燃焼室内径 *d* は Fig. 3.5 のように 12.0 ~ 30.0 mm の 4 種類とした.なお,燃焼室の 長さは 64 mm で一定としている.

3.4.ノズル 設計推力が 0.4 N となるように、ノズルのス ロート径は 1.0 mm とした.また、DME の蒸気圧(0.6 MPa) を用いた自己加圧により供給するため、設計燃焼室圧力を 0.4 MPa としている.さらに、ノズル出口の流れを最適膨張 とするためノズルの開口比は 1.3 にした.なお、以上の値 は化学平衡計算プログラム (NASA-Chemical Equilibrium with Application : CEA) ⁽⁵により求めた理論値を用いて算出 した.

4.実験装置

本研究で用いる実験装置の概略を Fig. 4.1 に示す. №20 お よび DME の供給ライン上にマスフローコントローラを配 置し,推進剤流量を調整した.また,安全のために,逆止 弁と,推進剤の供給開始と中断を瞬時に行うための電磁弁 を設けている.自己加圧による供給のためには供給圧力が 5 atm は必要なため,DME タンクを 30 °C に温め,また, №20 は圧力レギュレータを用いて減圧した.点火はスパー クプラグで行うため,イグニッショントランスにより 5 kV まで昇圧し微少放電を起こした.燃焼室圧力の測定には汎 用の圧力計を用いるが,圧力センサを高温のガスから保護 するため,内径 2 mm,長さ 2 m のステンレス管により燃焼 ガスを冷却してから測定した.推力は,振り子式のスラス トスタンドを用いて測定し,変位センサで求めた振り子の 振幅をもとに推力を算出する.

5.実験条件

本研究では燃焼室内径 d を実験パラメータとして作動実験を行った. その詳細を Table 5.1 に示す.

推進剤の流量は推力が 0.4 N になるよう決定し, 混合比 O/F については理論 *Isp(Ispth)*及び理論 C*(C*th)が最大となる O/F=3.5 を中心に, 量論混合比 O/F=5.7, 酸化剤過多 O/F=8.0 で実験を行った. Table 5.2 に各 O/F における推進剤流量と その時の真空 *Ispth*, C*th も併せて示す.

6.実験結果及び考察

6.1.作動実験結果 作動試験を行ったところ, 燃焼の安 定性が条件によって変化した. すなわち, 燃焼が消炎する ことなく安定した場合, 安定した燃焼が得られるも途中で 消炎してしまう場合, スパークプラグの繰り返し作動のた め断続的な燃焼を繰り返し自律燃焼に至らない場合に分か れた. ここでは, 各々について燃焼室圧力と推力の時間履 歴を示す

6.1.1 燃焼が安定した場合 Fig. 6.1 に安定燃焼となった 条件の時間履歴の1例を示す.スパークプラグの作動開始 後の約30秒間は着火と消炎を繰り返す断続的な燃焼とな った,その後,燃焼が安定し,供給を止めるまでの5分間 持続した.この時の実験条件はO/F=8.0, d=25.0 mm であ り, C^* 効率(η_{C^*})は89.3%, *Isp* 効率(η_{Isp})は62.0%となった.

6.1.2 安定燃焼時に途中で消炎する場合 Fig. 6.2 に燃焼 中断となった条件ときの1例である.この時の実験条件は O/F=3.5, *d*=12.0 mm である.7.1.1 と同様にスパークプラ グ作動後, 燃焼が安定したが,その約100秒後に燃焼が停 止した.スパークプラグを作動すると安定した燃焼が再開

Table.3.1. Injector					
Number of holes		16			
Injection degree[deg.]	δ	75			
	θ	90			
Injection holes diam.[mm]	DME	1.0			
	N_2O	12.0			

Fig.4.1. Schematic diagram of the experimental apparatus.

Table 5.1. Parameter of thruster.					
Combustion chamber inner diam. <i>d</i> [mm]	12.0, 18.5, 25.0, 30.0				

Table 5.2. Parameter of propellant.							
O/F	ma	mass flow rate [mg/s]		Vacuum	C^* [m/a]		
	N_2O	DME	$N_2O + DME$	$Isp_{th}[s]$	C th[III/S]		
3.5	162	46	208	207.5	1508.3		
5.7	186	33	219	197.7	1437.4		
8.0	207	26	233	185.7	1350.1		

Fig.6.1. Time history of combustion chamber pressure for stable combustion. (d = 25.0 mm, O/F = 8.0)

Fig.6.2. Time history of combustion chamber pressure for stable combustion with automation interruption. (d = 12.0 mm, O/F = 3.5)

したが、再度中断した.このように、安定した燃焼が得られるが突発的な消炎が起きた.なお、この時の η_{C^*} は 66.8%、 η_{Lsp} は 60.0%となった.

6.1.3 断続的な燃焼を繰り返す場合 Fig. 6.3 は断続燃焼 となったときの1例である.この時の実験条件は O/F=8.0, d=30.0 mmである.スパークプラグを繰り返し作動してい る間中は着火と消炎を繰り返す断続的な燃焼となり,1分 後にスパークプラグの作動を止めると燃焼も中断し,安定 燃焼に至らなかった.この時の性能は平均で, η_{C^*} が 39.0%, η_{Sp} が 23.0%となった.

6.2.燃焼室内径 d と性能の関係 燃焼室内径 d による性能への影響を評価するため、d=12.0, 18.5, 25.0, 30.0 mmの計4種類で作動実験を行った. Fig. 6.4 に $d \ge \eta_{C^*}$ の関係を示す. d=25.0 mmの条件において Isp_{th} , C^*_{th} がともに最大 となる O/F = 3.5 で η_{C^*} は最大の 79.2 %となった. 傾向を見ると、d=12.0 mm から 25.0 mm の範囲では、dの増加に伴って η_{C^*} が向上している. 逆に、d=25.0 mm から 30.0 mm の範囲では低下していく傾向にあった. この結果から、 $d=20 \sim 30 \text{ mm}$ に η_{C^*} が最大となる dが存在すると考えられる.

7.流体解析

6.2 で述べたように、燃焼室内径 d の違いにより性能に差 が見られた. この理由を明らかにするため、Solid works に 付属する Flow simulation を用いて有限体積法による内部流 れの解析を行った. ただし、燃焼のないコールドガスの解 析であり、燃焼時とは内部流れは異なる. Fig. 7.1 は計算領 域内の格子状のメッシュであり、Table 7.1 にベースメッシ ュ数を示している. スパークプラグ近傍等の形状が複雑な 領域ではメッシュはより細かくなっている.

Fig. 7.2, 7.3 に *d* = 30.0 mm と *d* = 12.0 mm の 2 条件にお いて, *Isp*th が最大となる O/F = 3.5 の解析結果を示す. 上側 が DME 質量割合の分布で下側が流速の分布である.

d = 30.0 mm の場合, 6.2 に示したように性能が低くなって いた. DME 質量割合の分布をみると,燃焼室中心では十 分に混合出来ていない. これはdが大きく, DME の流れが 中心の流れに届いていないためである. そのため十分な混 合が出来ず,性能が低下したと考えられる.

一方、d=12.0 mmの場合、燃焼室中心まで十分に混合で きている.よって、燃焼室内径を小さくすることにより混 合を促進できる.しかし、Fig. 6.7 のように 25.0 mm から 12.0 mm の範囲ではdが小さくなるにつれて η_{c^*} は低くなる 傾向にあった.これは、dが小さくなると流速が上昇し推 進剤の滞留時間が短くなり、性能が低下したと考えられる. 以上より、d=25.0 mm近くの中間領域で η_{c^*} が最大となっ たのは DME の混合と流速に起因するといえる.

Fig.6.3. Time history of combustion chamber pressure unstable combustion. (d = 30.0 mm, O/F = 8.0)

Fig.6.4. Dependence of C^* efficiency η_{C^*} and d

Table7.1. Number of meshes.

8.結言

本研究では超小型衛星搭載に適した推進機として,無毒で小型・簡素化を望めるN2O/DME二液式推進機を提案し, その実現を目的としている.今回は,性能の向上のため, 推進剤の混合方法に着目し 0.4N 級の試作機による真空下 での作動実験を行った.これにより以下の知見を得た.

- i. 燃焼の安定性は消炎することなく安定した場合,安定 した燃焼が得られるも途中で消炎してしまう場合,ス パークプラグの繰り返し作動のため断続的な燃焼を 繰り返し自律燃焼に至らない場合の3種類に分かれた.
- ii. 性能の理論値が最大となる O/F = 3.5 においてη_c・は最 大で 79.2 %となった.
- iii. 各燃焼室内径の d における η_{c^*} を比較すると, 燃焼室 内径 d が 12~25 mm の範囲では d が大きくなるにつれ て η_{c^*} が向上していく傾向にあった. 一方で, 燃焼室内 径 d が 25~30 mm の範囲では d が大きくなるにつれて η_{c^*} が低下していく傾向にあった. このことから, η_{c^*} が最大となる最適な燃焼室内径 d がおよそ 20~30 mm の範囲に存在する可能性が考えられる.

参考文献

- B. Doncaster, et al. :2017 Nano/Microsatellite Market Forecast", Small satellite Report, Space Works Enterprise, Inc.,2017.
- 仲町一郎,大木不二雄,田中元治,千原秀昭:化学大辞典, 株式会社東京化学同人,1989
- 日本 DME フォーラム編: DME ハンドブック,オーム社, 2012
- 4) Takamasa Asakura, Shouta Hayashi, Yasuyuki Yano, Akira Kakami: Influence of Injector for Performance of N2O/DME Bipropellant Thruster, 31st International Symposium on Space Technology and Science, Ehime, Japan, 2017-a-37, June 3-9, 2017.
- Gordon, S. and McBird, B.J. : Computer Program for Calculation of Complex Equilibrium Compositions and Applications, NASA Reference Publication 1311, 1996.