HAN 系推進剤を用いた低電力 DC アークジェットスラスタの研究開発

Research and Development of a Low-Power DC Arcjet Thruster Using HAN series Propellant

○奥田 和宜・三村 岳史・下垣内 勝也・奥村 俊介
田原 弘一・高田 恭子(大阪工業大学)
桃沢 愛(東京都市大学)・野川 雄一郎(Splije・CEO)・中田 大将(室蘭工業大学)

 Kazuyoshi Okuda • Takefumi mimura • Katsuya Shimogaito • Syunsuke Okumura Hirokazu Tahara • Kyoko takada(Osaka Insutitute of Technology)
Ai Momozawa (Tokyo City University) • Yuichiro Nogawa(Splije • CEO) Daisuke Nakata (Muroran Institute of Technology)

Abstract (概要)

In recent years more and more space development has become popular, environmental pollution caused by toxic propellants has been regarded as a problem. We focused on a DC arcjet thruster. It is one of the electric propulsion. And it has higher thrust than other electric propulsion. Hydrazine is mainly used for Arcjet thruster as a propellant. hydrazine is very high in toxicity. In this study, we focused on HAN series propellant (Hydroxyl Ammonium Nitrate) as a low toxicity propellant. We used SHP 163 used for the water - cooled arcjet thruster to obtain performance characteristics. To improve the performance, we developed an anode -radiation-cooled type arcjet thruster and obtained the basic performance. We confirmed the operation of the anode-radiation-cooled arcjet thruster using SHP163 propellant.

1. 序 論

近年ますます宇宙開発が盛んになっている中、毒性のあ る推進剤による環境汚染が問題視されてきている. 私達は 構造及び作動原理が単純な DC アークジェットを取り上げ た. アークジェットスラスタは電気推進機の一つであり, 他の電気推進機と比べ推力が高いという特徴がある. その 高い推力を生かし人工衛星の軌道制御や姿勢制御、緊急時 の回避運動に使用される.しかし、アークジェットスラス タの推進剤にはヒドラジン(Hydrazine: N₂H₄)という極めて 毒性の高い物質が使用されている.ヒドラジンは安全管理 が非常に難しく、取り扱いには多くの時間やコストがかか ってしまう.現在では低毒性推進剤を用いたアークジェッ トの開発が進められている. その推進剤の一つとして注目 されているのが HAN(Hydroxyl Ammonium Nitrate : NH₃OHNO₃)系推進剤である. HAN 系推進剤はヒドラジン よりも燃焼性が高く毒性も低い. また, 海外の研究機関な どでも注目されており次世代の衛星搭載用推進系の中心と なっていくと考えられる 1~2).

本研究では HAN 系推進剤の1種である SHP163 を使用し その分解ガスを用いて実験室モデルである水冷式アークジ ェットスラスタで性能取得を行った. さらにヒドラジン分 解ガスとの性能比較を行った. また,性能向上のためアノ ード部を輻射冷却式に変更した低電力アノード輻射冷却式 アークジェットスラスタを開発し基礎性能の取得と水冷式 との性能比較を行った. さらに,SHP163 を用いた際の挙 動の確認を行った.

2. 実験装置

2.1 実験装置概要

本実験で用いた実験装置の概略図を図1に示す.実験装置 は真空チャンバ,真空排気装置,推進剤供給装置,電源装置, 板バネ式推力測定装置,DCアークジェットスラスタ,ガス ジェネレータの7つに大別される.アークジェットスラスタ は真空チャンバ内に設置されている.推進剤供給装置はマス フロコントローラを使用しており分解ガスは放電室内に供 給する前に混合している.また,今回使用するHAN系推進 剤の分解ガスの中には水が含まれているためその蒸気化の ためにガスジェネレータを用いて供給を行っている.真空チ ャンバ内部の圧力はピラニ真空計を用いて測定している.表 1に真空排気装置の詳細を示す.

表1 真空排気装置概要

Vacuum Chamber, mm	Length 2,000 Inner Diameter 1,200
Rotary Pump, m ³ /h	Exhaust Velocity 600
Mechanical Booster, m ³ /h	Exhaust Velocity 6,000

2.2 ガスジェネレータ

本実験で使用したガスジェネレータの写真を図2に示す. ガスジェネレータは水を直接加熱し蒸気化させる装置であ る. 全長が約150mm,最大直径が約60mmである.蒸気化に はグロープラグを用いた.

図2 ガスジェネレータ本体写真

2.3 水冷式アークジェットスラスタ

本実験で使用した水冷式アークジェットスラスタの本体 写真と断面図を図3と図4に示す,電極部の概略図を図5に示 す.また,電極部の各種寸法を表2に示す.この水冷式アー クジェットスラスタは全長が132.5mm,最大直径は90.0mm である.本実験で使用したHAN系推進剤には腐食性がある ためアノードおよびカソードホルダには耐食性の高い SUS304を使用した.カソードには融点が高く導電性に優れ た純タングステン,ボディには耐熱性の高い絶縁体であるポ リカーボネートを使用した.

図3 水冷式アークジェットスラスタ本体写真

図4 水冷式アークジェットスラスタ断面図

表2	水冷式の電極部の各種寸法
1×4	小市よいノ电型ロックロー里ゴム

	A 12 1 10
Cathode Diameter, mm	2.0, 3.0
Constrictor Length, mm	1.0
Constrictor Diameter, mm	1.0
Divergent Nozzle Angle, deg.	52
Convergent Nozzle Angle, deg.	102
Electrode Gap, mm	0.0

2.4 アノード輻射冷却式アークジェットスラスタ

アノード輻射冷却式アークジェットスラスタの本体写真 と断面図を図6と図7に示す.また電極部の概略図を図8,各 種寸法を表3に示す.このアークジェットスラスタのアノー ド部には昇華点が高いカーボンを,カソードには純タングス テンを,絶縁体にはボロンナイトライドを使用した.また電 極部形状は水冷式のものと同じ形状にしている.絶縁体を推 進剤供給口周りに設けることによりガスジェネレータを電 気的に独立させた.また,推進剤供給口から放電室までの距 離を短くし,さらに推進剤供給口を蒸気化した水とその他の 推進剤に分けている.

図6 アノード輻射冷却式アークジェットスラスタ本体写真

図7 アノード輻射冷却式アークジェットスラスタ断面図

図8 アノード輻射冷却式アークジェットスラスタ電極形状

表3	アノー	ド輻射の電極部の各種寸法	
			Î

Cathode Diameter, mm	3.0
Constrictor Length, mm	1.0
Constrictor Diameter, mm	1.0
Divergent Nozzle Angle, deg.	52
Convergent Nozzle Angle, deg.	102
Electrode Gap, mm	0.0

3. 実験結果

3.1 水冷式アークジェットスラスタにHAN系推進剤を用いた推力測定実験

実験室モデルである水冷式アークジェットスラスタの推進剤にHAN系推進剤の一種であるSHP163分解ガスを用い,性能測定を行った.SHP163分解ガスの成分としてはモル分率を元に燃焼成分(窒素,二酸化炭素,水)を混合した.また,ヒドラジン分解ガスを比較対象とし,スラスタの性能特性を調べた.各推進剤の性能比較における実験条件を表4に示す. HAN(SHP163)系分解ガスにおいてはガスジェネレータを通して水を蒸気化させて供給を行った.

本実験では流量を40,50,60mg/s,投入電流を7,8,9,10A,カソード径を2mmとし実験を行った.本実験での HAN(SHP163)系分解ガス、ヒドラジン分解ガスの噴射の様 子を図9,各推進剤の性能特性のグラフを図10に示す.さら に、噴射後のカソードとアノードの様子を図11に示す.流量 40mg/s,投入電流10Aにおける性能を比較したところ, HAN(SHP163)系分解ガスでは推力84.1mN,比推力214.6s,推 進効率5.8%という結果が得られた.また、ヒドラジン分解ガ スでは推力113.9mN,比推力290.7s,推進効率6.2%という結 果となり、HAN(SHP163)系分解ガスはヒドラジン分解ガス よりも低い性能を示した.また、HAN(SHP163)系分解ガス は噴射後に両電極に激しい損耗を確認した.

表4 各種推進剤の性能比較における)実験条件
---------------------	-------

Propellant	HAN(SHP163)	Hydrazine
	Decomposed Gas	Decomposed Gas
Flow Rate, mg/s	40, 50, 60	
Current, A	7, 8, 9, 10	
Cathode	2	
Diameter, mm		

(a) HAN(SHP163)分解ガス

ス (b) ヒドラジン分解ガス 図9 各推進剤による噴射の様子

図10 各推進剤の各種性能比較

(a) カソードの損耗の様子

(b) アノードの損耗の様子コンバージェント側

側 (c) アノードの損耗の様子ダイバージェント側 図11 電極部の損耗

3.2 アノード輻射冷却式アークジェットスラスタの基礎 性能取得実験

基礎性能向上のためにアノード部を輻射冷却式にしたア ノード輻射冷却式アークジェットスラスタの開発を行った. アノード輻射冷却式アークジェットスラスタでの性能取得 を行い,水冷式の基礎性能との比較を行った.推進剤には 着火応答性の高い窒素を用いた.実験条件を表5に記す.ア ノード輻射冷却式アークジェットスラスタを用いた基礎性 能取得及び基礎性能比較では目的としていた性能の向上を 確認できた.流量60mg/s,投入電流17Aの時,水冷式アーク ジェットスラスタの推力は125.5mN,比推力は213.4s推進効 率は7.3%となった.アノード輻射冷却式アークジェットスラ スタの推力は179.9mN,比推力は306.1s,推進効率は15.1%と なり,割合にして推力は40%,比推力は40%,推進効率は 100%以上の向上を確認できた.噴射の様子を図12に示し性 能比較を図13に示す.

表5	宝驗冬件
13.5	一大吹木口

Cooling-type	Water-cooled	Anode-radiation-cooled
Propellant	Nitrogen	
Flow Rate, mg/s	40,50,60	
Current, A	14,15,16,17	
Cathode	3.0	
Diameter, mm		

図12 推力測定時の噴射の様子

図13 アノード輻射冷却式アークジェットスラスタの窒素を用いた基礎性能

3.3 アノード輻射冷却式アークジェットスラスタにHAN 系推進剤を用いた噴射実験

アノード輻射冷却式アークジェットスラスタの推進剤に SHP163分解ガスを使用し作動確認を行い,その挙動を確認 した.流量は60,120mg/sとし投入電流は17Aとした,着火 応答性のいい窒素でまず作動を導きその後H2OおよびCO2を 混合させて供給した.実験条件を表6に示す.噴射の様子を 図14に示す.作動停止直前および実験後のカソードの様子を 図15に示す.窒素での初期作動時はどちらの流量も安定して いた.流量が多い分120mg/sのほうはプリュームが長く伸び ていることを確認できた.流量が60mg/sの時はプリュームが 発散しておりその様子から低電圧モードになっている可能 性も考えられる.水冷式のときと比べ作動の様子は比較的安

(a) 流量60mg/s

定したものであったが120mg/sの安定した作動後に激しい火 花が大量に観測されそのまま停止してしまった.原因として 考えられる電極の損耗を確認したところ激しい損耗が確認 できた.そのため今後長時間および正確な推力を確認するに は電極損耗の低減が必須事項である.

表6 実験条件

Propellant	SHP163 decomposed gas
Flow Rate, mg/s	60,120
Current, A	17
Cathode	3.0
Diameter, mm	

(b) 流量120mg/s

(a) 作動停止直前の噴射の様子
(b) 実験後のカソードの様子
図15 作動停止直前の噴射の様子と実験後のカソード損耗の様子

図14 SHP163を使用した噴射の様子

4.考察

4.1 水冷式アークジェットスラスタにHAN系推進剤を用いた推力測定実験

各推進剤の性能比較を行った結果SHP163の性能はヒドラ ジン分解ガスの性能よりも低い結果となった.これはカソー ドの損耗により低電圧モードになったことが原因のひとつ であると推測できる¹⁻³⁾.カソード損耗の原因としては, SHP163分解ガスの中に含まれる酸素成分によってカソード が酸化をしたことが考えられる⁴⁻⁷⁾.タングステンの融点は 3,422℃であるが,酸化タングステンになることで融点が 1,473℃まで低下する.そのため激しい損耗になったと考え られる.また,HAN(SHP163)系分解ガスはヒドラジン分解 ガスと比較をすると解離エネルギーが大きいためエネルギ ー損失も大きくなり性能の低下に繋がったと考えられる。

4.2 アノード輻射冷却式アークジェットスラスタの基礎 性能取得実験

新たに開発したアノード輻射冷却式アークジェットスラ スタでの性能取得を行ったところ,目的としていた性能の向 上を確認できた.性能は割合にして推力は40%,比推力は 40%,推進効率は100%以上の向上を確認できた.各パラメ ータが向上した原因としては水冷式から輻射冷却式に変更 することで損失していたエネルギーの一部が推進力に変換 されたためだと考えられる.従来の水冷式では水冷によって エネルギー損失が起こっており推進パラメータの低下に繋 がっていた.新たに開発したスラスタはアノード部を水冷し ない輻射冷却式となっているためエネルギーの推進力への 変換効率が向上したと考えられる.

4.3 アノード輻射冷却式アークジェットスラスタにHAN 系推進剤を用いた噴射実験

新たに開発したアノード輻射冷却式アークジェットスラ スタにHAN系推進剤を使用しその作動の様子を確認した. 推進剤流量60 mg/sにおいてはプリュームが極端に小さくな っており,アーク柱がコンストリクタ手前に付着する低電圧 モードになっていることが考えられる.また,噴射中にもプ リュームがさらに小さくなった様子が確認された.この原因 としては電極が短くなり電極間距離が大きくなり、放電が不 安定になったことが原因と考えられる.また,推進剤流量120 mg/sについては安定した噴射が確認されたが、その後火花を 大量に噴射後消弧した.実験後のカソードに損耗が確認でき たため、この火花はソードが損耗したものであると考えられ る. 実験結果より60 mg/s, 120mg/sともに作動の確認をする ことができた.特に120mg/sに関しては水冷式に比べ,アノ ード輻射冷却式では安定した作動であったと考えられる.し かし, 作動による電極損耗が深刻であり, 性能, 安定作動に も大きな影響があると考えられる.そのため長時間噴射,正 確な性能測定を行うためには電極損耗の低減が必要だと考 えられる

参考文献

- Yuki Fukutome, Suguru Shiraki, Katsuya Shimogaito, Hirokazu Tahara, Kyoko TakadaYuichiro Nogawa and Ai Momozawa: Performance and Thermal Characteristics of Low-Power Arcjet Thrusters for Water Propellant, The 2016 Asia-Pacific International Symposium on Aerospace Technology, R1-3,(2016), Toyama International Conference Center (Toyama, Japan).
- 2). Suguru Shiraki and Hirokazu Tahara : Performanceand Thermal Characteristics of Low-Power DCArcjet Thrusters with Radiation-Cooled Anodes forGreen Propellants, AIAA Propulsion and EnergyForum and Exposition (Propulsion and Energy2016), AIAA-2016-4700, (2016), Salt PalaceConvention Center (Salt Lake City, Utah, USA).
- 3). 井上史博,福留佑規,白木 優,松本和真,田原弘一:低毒性 推進剤を用いた直流アークジェットスラスタシステム の開発研究,第55回航空原動機・宇宙推進講演 会,(2015),JSASS-2015-2B13.
- 4). 井上史博,福留佑規,白木 優,松本和真,田原弘一,野川雄 一郎,桃沢 愛:低電力直流アークジェットスラスタに おけるHAN系推進剤を用いた性能特性及び水推進剤 による作動実験,平成27年度宇宙輸送シンポジウ ム,(2015),STEP-2014-011.
- 5). 下垣内勝也,中西隆史,井上史博,福留佑規,白木 優,田 原弘一,高田恭子,桃沢愛,野川雄一郎:低毒性推進剤を 用いた低電力DCアークジェットロケットエンジンの 性能特性,電気学会プラズマ研究会,(2015),PST-15-049.

- 6). 奥田和宜,福留佑規,白木 優,下垣内勝也,三村岳史, 田原弘一,高田恭子,桃沢 愛,野川雄一郎:低毒性推 進剤を用いた低電力アノード輻射冷却式 DC アーク ジェットスラスタの性能特性,第53回日本航空宇宙学 会 中部・関西支部合同秋期大会,A3,(2016),名城大学 ナゴヤドーム前キャンパス (愛知県名古屋市).
- 7). 三村岳史, 下垣内勝也, 奥田和宜, 奥村俊介, 田原弘一, 高田恭子 (大阪工業大学), 桃沢愛 (東京都市大学), 中 田大将 (室蘭工業大学), 野川雄一郎 (Splije):低毒 性推進剤を用いた低電力DCアークジェットスラスタ の性能特性と熱特性, 第61回宇宙科学技術連合講演会, 2E01, (2017)