MPD スラスタの準定常作動における実験的研究

Study about Quasi-Steady Operation of MPD Thruster

○井出 舜一郎(東大)・月崎 竜童・西山 和孝・國中 均(宇宙航空研究開発機構)

OShunichiro Ide (The University of Tokyo) • Ryudo Tsukizaki • Kazutaka Nishiyama • Hitoshi Kuninaka (JAXA)

Abstract (概要)

In the quasi-steady state operation of MPD thrusters, one of problems is the anode wears and the performance deteriorates when the operation time is prolonged for evaluation of quasi-steady state. In this paper, we report the erosion is reduced and the performance is improved by changing the anode material.

記号の説明

陽極シースでの電子加速
陽極内への電子流入における凝縮エネルギー
トムソン効果による発熱
熱伝導による損失
熱放射による損失
金属蒸発による損失
放電電流
陽極材料の仕事関数
作動時間
比推力
推力
推進剤流量
重力加速度
推進効率
投入電力
放電電圧
自己誘起による磁場強度
理論的な電磁加速による推力
真空中の透磁率
放電室幅
外部コイルによる磁場強度
電極間距離

1.背 景

電気推進機は高比推力な宇宙機用スラスタとして利用されている.2010年に帰還した小惑星探査機「はやぶさ」では300W級マイクロ波放電式イオンエンジンが約3万時間稼働し注目を集め、後継機にも応用されている.現在は各国で10kW級ホールスラスタの開発が盛んに行われている¹⁾. 我々はその先の候補として、100kW級MPDスラスタ²に焦 点をあてて研究を進めている.

MPD スラスタの地上試験では装置の簡素性から,1ms 程 度のパルス作動が主に行われている.しかし性能評価の準定 常性には議論の余地がある.本研究室では,作動時間が1-5msまで可変に設定できる電源装置を開発し,作動時間ごと の推進性能を取得してきた³⁾.

しかし作動時間を長くすると,熱入力が大きくなることで 陽極が損耗するため,十分な推進性能が得られていなかった. 本研究では,陽極材料を変更することで,損耗を軽減し,準 定常評価において十分な推進性能を確保することを目的と している.

2. 先行研究

2.1 **陽極損耗と性能劣化**本研究室で開発した電源を用 いて,作動時間を1-3msまで可変にして推進性能を取得した ⁴⁾.図1に各作動時間における推力電力比のグラフを示す.

図1 先行研究における各作動時間の推力電力比

推力電力比は概して 1mN/kW 程度と低く,投入電力に対

して推力が十分に出ていないことがわかる.また準定常状態 が保たれているならば,推進性能は作動時間に対して不変で あると予想されるが,磁場印加時においては,作動時間に伴 って推力電力比が増大している.これらは投入電力が陽極の 損耗に多く費やされていることを示唆しており,損耗した燐 青銅の一部が推力として余分に噴射されていると考えられ る.図2に損耗した陽極の様子を示す.

図2 先行研究における損耗した陽極(燐青銅)

陽極の損耗を軽減することで,推力電力比が向上し,正確 な準定常作動が行えると考える.

3. 研究方法

3.1 **陽極材料の変更** 放電電流レベルや放電室形状など, 作動条件を変更しない方法として,本研究では陽極材料を変 更することで,損耗の軽減を試みる.式1に放電中の陽極近 傍におけるエネルギー収支を示す⁵.

$$Q_{accel} + Q_{condence} + Q_{tomson} = Q_{conduct} + Q_{rad} + Q_{vanor}$$
(1)

右項 Q_{vapor} は陽極損耗に寄与する熱損失を表しており, 左 辺の熱入力を抑えることで軽減できると考えられる. 左項 Q_{accel} は電子数密度に, Q_{tomson} は陽極内の温度勾配にそれぞ れ依存するが, 同様の作動条件では大きな変化はないと考え られる. $Q_{condence}$ は電子衝突による陽極への熱入力を表して おり, 式2に表すように, 陽極材料の仕事関数に依存する⁹.

$$Q_{condence} \sim J_d \cdot \phi \cdot t \tag{2}$$

これより仕事関数が小さい陽極材料のほうが,損耗が少ないと予想される.そこで表1のように陽極材料を燐青銅から2%酸化ランタン-タングステンに変更する.

	衣1 陽極材料の	化較
材料	燐青銅	2%酸化ランタン -タングステン
仕事関数 [eV]	4.95	2.6 - 3.2
融点 [℃]	1000	> 2315

また融点が高い点も損耗に対して有利に働くことが期待 される.

4.実験

4.1 実験装置 本研究は宇宙航空研究開発機構・宇宙科 学研究所の真空チェンバー(到達真空度 3×10⁻³ Pa)を用いて 行われている.実験系の概要を図3に示す.

本研究室では、矩形型スラスタヘッドの両側にコイルを配 した外部磁場印加型2次元 MPDスラスタを採用しており^つ, 陰極は2%酸化ランタン-タングステンを用いている. 放電電 圧は陽極-陰極間の直近を測定し、放電電流はチェンバー外 の非接触センサ(LF2005S, LEM)で測定している. また推 力測定には振り子式スラストスタンドを用いており、スラス ト時の振動変位を LED 変位計(Z4D-F04A, Omron)で読み 取り,校正によって推力の積算であるインパルス[N・ms]に 変換している. スラストスタンド正面におけるチェンバー内 の様子を図4に示す.

図4 スラストスタンド正面の写真

4.2 実験条件 スラスタの作動条件を表2に示す.

表 2	作動条件
作動時間	3,0 ms
推進剤種	Ar
推進剤流量	50 / 100/ 300 mg/s
外部磁場強度	0 / 50 mT

また作動に際して図 3 で示した各装置は図 5 のようなシ ーケンスで駆動する.

図5 各装置の駆動シーケンス

先行研究⁸⁾を参考に,放電室内へのガス到達を FAV 駆動から 4ms 後として,種火用イグナイタで放電を開始する.その後,放電電源の IGBT をターンオフさせることで,放電は終了する.

4.3 実験結果 以下に示すグラフ群は表 3 にまとめたプ ロット点に従っている.

		衣3 ノロジト点の	7.私小
mg/s	mT	0	50
50	C	0	0
10	0	Δ	Δ
30	0	×	×

表3 プロット点の表示

比推力に対する推進効率のグラフを図6に示す.比推力は 式3,推進効率は式4(投入電力は式5)からそれぞれ求め た.

図6 比推力-推進効率

$$Isp = \frac{F}{\dot{m}g}$$
(3)

$$\eta = \frac{F^2}{2\dot{m}P} \tag{4}$$

$$P = \frac{\int J_d V_d dt}{t_d}$$
(5)

いずれの条件でも推力電力比は 3-5mN/kW と向上し, 最大 で比推力 3200s, 推進効率 10%で推力電力比 6.5mN/kW であ った.実験後の陽極の様子を図 7 に示す.

図7 実験後の陽極(2%酸化ランタン-タングステン)

目視においては,先行研究に比べて十分に損耗を軽減でき ているといえる.

5. 考 察

5.1 **放電電圧** 各推進剤流量において,損耗の大きかった先行研究と本研究の結果を比較する.図8.9,10にそれぞれ 300,100,50 mg/s における放電電圧のグラフを示す.なお, 先行研究の結果は表 3 のプロット点を黒塗りして示している.

図 8 放電電流 - 放電電圧 (300mg/s)

図 10 放電電流 - 放電電圧 (50mg/s)

一般的に大電力の MPD スラスタでは,放電電圧は放電電 流に伴って増大するが,推進剤流量を小さくすると放電電圧 の増大が緩和,または減衰している.この傾向は外部磁場印 加時に顕著である.これは Pisa 大学⁹における類似の作動条 件でもみられており,陽極の損耗によりプラズマ中の電子密 度が増大することで,放電電圧が減衰したと考えられる.本 研究では先行研究に比べて,放電電圧を比較的高く維持して いるようにみえる.これは本研究の結果では損耗が小さいこ とを表している.

5.2 推力 本研究では外部磁場強度が 50mT と小さいため,自己誘起磁場を考慮して理論電磁推力F_{th}の曲線を描く.

矩形スラスタにおける自己誘起磁場*B_{SF}*は式 6 のように表 せる¹⁰.

$$B_{SF} = \frac{\mu J_d}{2W} \tag{6}$$

これを用いて理論電磁推力を式7より求め, 推力のグラフ にあてはめた.

$$F_{th} = (B_{SF} + B_{AF}) \cdot J_d \cdot H \tag{7}$$

図 11 に先行研究,図 12 に本研究における推力のグラフを それぞれ示す.なお,理論電磁推力の曲線は磁場強度ごとに 点線で示している.

図 12 本研究における放電電流 - 推力

先行研究に比べて,理論電磁推力に近い推力が出ているこ とがわかる.外部磁場印加時において,理論曲線から外れて しまうのは,ホール効果によるプルームの傾きが主な要因で あると考えられる.

6. 結 論

MPD スラスタの準定常作動における性能評価に際して, 作動時間の増大による陽極の熱的損耗を軽減するため,陽極 材料を仕事関数の小さい 2%酸化ランタン-タングステンに 変更し,放電電圧と推力を比較した.本研究では目視に加え て,高い放電電圧を維持することから,先行研究に比べて損 耗が軽減したと結論づけた.また推力も理論曲線に近くなり, 結果として,損耗の軽減により推力電力比は最大 6.5mN/kW まで向上した.

参考文献

- 1) 鳩岡恭志, 久本泰慶: "次期技術試験衛星の開発", H28 年度宇宙輸送シンポジウム, STEP-2016-010, 2017.
- R. G. Jahn : "Physics of Electric Propulsion", McGraw-Hill, New York, 1968.

- 井出舜一郎,月崎竜童,國中均: "外部磁場印加型 二次元 MPD スラスタのための電源開発",H27 年 度宇宙輸送シンポジウム,STEP-2015-062,2016.
- 井出舜一郎,月崎竜童,國中均,西山和孝: "電気 二重層キャパシタを用いた外部磁場印加型 2 次元 MPD スラスタの準定常作動評価に関する研究", H28 年度宇宙輸送シンポジウム,STEP-2016-029, 2017.
- 5) 電気学会 放電ハンドブック出版委員会: "放電ハ ンドブック", 電気学会, pp.156-157, 1973.
- 森貞次郎,高橋貢,宮本紀男: "アーク電流が気中 銅電極の消耗に及ぼす影響", T.IEE Japan, Vol.119-B, No.5, pp.596-604, 1999.
- 中田大将, 岩川輝, 國中均: "直交外部磁場型2次 元 MPD アークジェット", 宇宙航空研究開発機構 特別資料 大電力化/モジュール化電気推進に関する 研究会, JAXA-SP-08-013, pp.51-62, 2009.
- 岩川輝: "外部磁場印加型二次元 MPD スラスタに 関する実験的研究",東京大学修士論文,2010.
- R. Albertoni, F. Paganucci, P. Rossetti, M. Andrenucci : "Performance Characterization of a 100-kW-class Applied-Field MPD thruster", Space Propulsion 2012, SP2012-2350633, 2012.
- 船木一幸: "MPDアークジェットの電磁流体流れ", 東京大学博士論文, 1995.