将来大型ミッション用大電力ホールスラスタの性能特性及び数値計算

Performance Characteristics and Numerical Calculation of High-Power Hall Thrusters for Future Large-Scale Missions

○古久保 裕介・藤原 恭平・川上 天誠・多川 真登・小林 充宜・ 田原 弘一・高田 恭子(大阪工大)・池田 知行(東海大)

○Yusuke Furukubo • Kyohei Fujiwara • Tensei Kawakami • Makoto Tagawa • Mitsuyoshi Kobayashi • Hirokazu Tahara • Kyoko Takada (Osaka Institute of Technology) • Tomoyuki Ikeda (Tokai University)

Abstract

A Hall thruster is one of the electric propulsion and has excellent characteristics such as high thrust, high thrust efficiency and long lifetime. Future projects of electric propulsion for construction of large 1 GW class solar power satellites and moon bases, and manned Mars exploration of in-space mission have been proposed. However, current Hall thrusters do not satisfy all performances although when considering potentials of lifetime, efficiency, compactness and performance, the improvement is required to meet it for achieving various future missions. Therefore, the Hall thruster requires to improve the performance. In this study, the performance characteristics were measured with SPT-type and TAL-type Hall thrusters in the range of discharge voltage 300-1,000 V. In addition, in order to improve performance, it is necessary to understand plasma feature inside the discharge channel and predict its performance. However, it is hard to make plasma diagnostics measurements inside the discharge channel. Therefore, numerical calculation using two-dimension Hybrid PIC model for the THT-VI was carried out. The validity of this model was verified by comparison between calculated and measured results.

1. はじめに

ホールスラスタは電気推進機の一種であり,高推力,高 効率,長寿命といった利点を持っている.このことから,1 GW 級太陽発電衛星の建設や有人火星探査などのミッショ ンが提案されているが,更なる性能向上が求められており 各国で積極的に研究が行われている.日本においても RAIJIN (Robust Anode-layer Intelligent for Japan IN-space propulsion)プロジェクトとして,日本の各大学,研究機関 により研究開発が積極的に進められている¹⁾.

本研究では、放電室直径 100 mm クラスの Magnetic-layer 型と Anode-layer 型に高電圧(1,000 V)を印加することで、小 型でありながら高比推力(3,000 s以上)を達成することがで きる大電力・高比推力のホールスラスタの開発を目標とし た.実験にはSPT型である THT-VI, TAL型である RAIJIN94 の2種類のスラスタを使用し、それぞれについて推進性能 を取得した.また、更なる性能向上には、放電室内部のプ ラズマ状態を理解すると共に性能予測をする必要がある. そこで、SPT型である THT-VI の2次元 Hybrid-PIC モデル を用いた数値計算を行い、本モデルの妥当性を検証するた めに、数値計算結果と実験結果を比較・検討した.

2. 実験設備

2.1 実験設備概要(大阪工業大学) 本実験で用いた 実験設備の概略図を図 1,真空チェンバ及び各種ポンプの 仕様を表1に示す.実験設備は真空排気系装置,スラスタ 作動システム,推力測定装置の3種に分類される.

表1 真空チェンバ	び各種ポンプの仕様
-----------	-----------

Chamber	
Length [mm]	2,250
Diameter [mm]	1,200
Pump	
Exhaust Velocity [L/s]	10,000
Back Pressure [Pa]	3.3 x 10 ⁻²

本大学が所有する真空チェンバは水冷ジャケット式真空 チェンバとなっており、スラスタの長時間作動実験等、ス ラスタの耐久試験にも使用可能となっている.真空チェン バは直径 1,200 mm、長さ 2,250 mm の円筒形状となってい る.真空排気系は低排気及び補助排気にロータリーポンプ と 15 Pa 以下の高真空排気にはターボ分子ポンプを 2 台使 用し排気速度は 10,000 L/s に達し、到達圧力は 3.3 x 10³ Pa である.

2.2 実験装置概要(宇宙航空研究開発機構) 本研究 に際し,宇宙航空研究開発機構(以後,JAXA と呼称)の 所有する実験設備にて,本学で行った実験と同条件で実験 を行った.実験装置の概略図を図 2,真空チェンバの外観 図を図3に示す³⁾.この真空チェンバは,小惑星探査機「は やぶさ」,「はやぶさ 2」この両機の実験を実際に行った 設備であり,日本屈指の性能を誇っている.実験システム に関しては,真空排気系以外のものは本学で使用したもの と同じものを使用した.

真空チェンバは、メインチェンバ、サブチェンバA、サ ブチェンバB、の3つで構成され、本実験ではサブチェン バAを使用した.真空チェンバ及び各種ポンプの仕様を表 2に示す.サブチェンバAは、メインバルブを介してメイ ンチェンバと接続されている.真空排気系については、サ ブチェンバAには、ターボ分子ポンプが接続されており、 前準備である粗引きはこのターボ分子ポンプで排気を行う. メインチェンバにはクライオポンプが接続されており、メ インバルブが開かれた後はこのクライオポンプで本引きを 行う.

図3 真空チェンバ外観図

表 2	真空チェ	ンバ及	び各種ポン	⁄プの仕様	È
-----	------	-----	-------	-------	---

Main Chamber	
Length [mm]	2,000
Diameter [mm]	5,000
Sub Chamber A	
Length [mm]	600
Diameter [mm]	800
Pumps	
Turbo Molecular Pump	
Exhaust Velocity[L/s]	140
Cryo Pump	
Exhaust Velocity [L/s]	28,000
Back Pressure [Pa]	3.25 x 10 ⁻⁵

3. SPT 型ホールスラスタ

3.1 SPT 型ホールスラスタ"THT-VI"本研究で使用 したホールスラスタ"THT-VI"の外観図を図 4,断面図を 図 5,放電室の仕様を表 3,磁場形成に用いたコイルの仕様 を表 4 にそれぞれ示す²⁾.

放電室長は40 mm, 外径 100 mm, 内径 56 mm, 材質に は BN (ボロンナイトライド)を使用した. 磁場形成に用 いたコイルは外側に6個,中心部に1個, アノードの後部 に1個備え付けられている.

図4 THT-VIの外観図

表3 THT-VIの放電室仕様

Discharge Channel	
Length [mm]	40
Inner Diameter [mm]	56
Outer Diameter [mm]	100
Material	BN (Boron nitride)

表 4	THT-VI	の各コイ	ル仕様
-----	--------	------	-----

Coils	
Material	Copper $\phi 0.5 \text{ mm}$
Inner Coil	
Number of Turns	1,200
Quantity	1
Outer Coils	
Number of Turns	1,400
Quantity	6
Trim Coil	
Number of Turns	350
Quantity	1

3.2 実験条件 2 種類の実験条件にて作動実験を行った.1 つ目は JAXA の真空チェンバを使用した作動実験である.実験条件を表5 に示す.放電電圧 300-1,000 V までを50 V 刻みで作動させ,推進剤には Xe (キセノン)を使用した.推進剤本体流量は 3.0 mg/s,ホローカソード流量は 0.1-0.2 mg/s と途中で増加させている.これは実験途中で作動が不安定になり,作動を安定させるために流量を増やしたためである.磁場形成用コイルには外コイルに 0.3 A,内コイルに 0.3 A,トリムコイルに 0.9 A 流している.

2 つ目は本学の真空チェンバを使用した作動実験である. 実験条件を表6に示す. JAXA での実験においてスラスタ 本体の過熱による影響があったため、スラスタヘッドの温 度上昇を避け放電電圧 300-1,000 V までを 50 V 刻みから 100 V 刻みに変更し、推進剤には Xe を使用した. 推進剤本 体流量は 3.0, 4.0 mg/s, ホローカソード流量は 0.1 mg/s で 作動実験を行った.また, JAXA での実験において高電圧 域での作動が不安定であったため磁場形成用コイルに流す 電流値を変更し外コイルに 0.45 A, 内コイルに 0.45 A, ト リムコイルに 0.6 A 流している.

表5 実験条件 (JAXA)

Discharge Voltage [V]	300-1,000	
Propellant	Xenon	
	THT-VI	3.0
Mass Flow Rate [mg/s]	Hollow Cathode	0.1-0.2
Coil Current [A]	0.3, 0.3, 0.9 (1	Inner, Outer, Trim)
Maximum Magnetic	12	
Field Strength [mT]	12	
Back Pressure [Pa]	3.55 x 10 ⁻³	
Vacuum Device	JAXA Chamber	
表 6	実験条件(OIT)	
Discharge Voltage [V]	300-1,000	
Propellant	Xenon	
Mass Flow Rate [mg/s]	THT-VI	3.0-4.0
	Hollow Cathode	0.1

Mass Flow Pate [mg/s]			
Mass Flow Rate [mg/s]	Hollow Cathode 0.1		
Coil Current [A]	0.45, 0.45, 0.6 (Inner, Outer, Trim)		
Maximum Magnetic	10		
Field Strength [mT]	19		
Back Pressure [Pa]	6.0 x 10 ⁻²		
Vacuum Device	OIT Chamber		

3.3 実験条件 両実験条件より性能測定を行った. 放電 電流 - 放電電圧の特性グラフを図 6, 推力 - 放電電圧の特 性グラフを図 7, 比推力 - 放電電圧の特性グラフを図 8, 推進効率 - 放電電圧の特性グラフを図 9 にそれぞれ示す.

JAXA の真空チェンバを使用しての実験では、放電電圧 850 V での作動時の際, 放電室外周部の絶縁体が赤熱して いることを確認した.過去の実験では放電電圧 1,000 V で の作動時においてスラスタが過熱により破損したため、一 時的に実験を中断、スラスタを冷却した. そのため、放電 電圧 900 V 以降の各パラメータに影響を及ぼしている.ま た, 放電電圧 950-1,000 V では作動が安定せず, カソード 流量を増加させ、かつ放電電流が急激に増加している. こ れは磁場形状が適しておらず、流入した電子を捕捉しきれ ずにアノードに到達しているためと考えられる.そのため、 本学の真空チェンバにて新たな磁場形状による性能測定を 試みた結果が外コイル 0.45 A, 内コイル 0.45 A, トリムコ イル 0.6 A の条件である. 放電電圧 300-1,000 V まで流量を 変化させず安定作動させることに成功し、高電圧域でも安 定していた.磁場を変更したことで磁束密度が増加し電子 を捕捉できていたため電離が促進され安定作動に繋がった と考えられる. また実験結果からも放電電流値に関しては 高い値を示したが、他のパラメータに関しては性能の向上 が確認できた.

4. TAL 型ホールスラスタ

4.1 TAL 型ホールスラスタ"RAIJIN94"本研究で使用したホールスラスタ"RAIJIN94"の外観図を図10,断面図を図11,放電室の仕様を表7,磁場形成に用いたコイルの仕様を表8にそれぞれ示す³⁾.

放電室長は 55 mm, 外径 60 mm, 内径 94 mm, 材質には 銅を使用した.磁場形成に用いたコイルは外側に 4 個, 中 心部に 1 個, 前面部に 1 個備え付けられている.

図 10 RAIJIN94 の外観図

図11 RAIJIN94の断面図

表 7 RAIJIN94 の放電室仕様

40
56
100
Copper (Cu)

表 8 RAIJIN94	4の各コイル仕様
Coils	
Material	Copper ϕ 1.0 mm
Inner Coil	
Number of Turns	736
Quantity	1
Outer Coils	
Number of Turns	736
Quantity	6
Trim Coil	
Number of Turns	100
Quantity	1

4.2 実験条件 RAIJIN94 の実験条件を表9に示す. 放 電電圧は300-1,000 V まで50 V 刻みで行い,推進剤にはXe とKrを使用した.磁場形成用コイルには,内コイルに0.8 A,外コイルに0.8 A,トリムコイルに2.0 A を流した.ま た,本実験においてはJAXAの実験設備を使用した.

衣 9 KAIJIN94 の美被朱件		
Discharge Voltage [V]	300-1,000	
Propellant	Xenon, Krypton	
Mass Flow Rate [mg/s]	RAIJIN94 3.0	
	Hollow Cathode 0.1	
Coil Current [A]	0.8, 0.8, 2.0 (Inner, Outer, Trim)	
Back Pressure [Pa]	3.55 x 10 ⁻³	
Vacuum Device	JAXA Chamber	

表 9 RAIJIN94 の実験条件

4.3 実験結果 放電電流 - 放電電圧の特性グラフを図 12, 推力 - 放電電圧の特性グラフを図 13, 比推力 - 放電 電圧の特性グラフを図 14, 推進効率 - 放電電圧の特性グ ラフを図 15 にそれぞれ示す.

図 14 比推力 – 放電電圧

(a) Xe による作動
(b) Kr による作動
図 16 RAIJIN94 の作動中の写真

本実験において,推進剤に Xe を使用した場合放電電圧 300-1,000 Vまでの作動を確認し,推進剤に Kr を使用した 場合,300-850 Vまでの作動を確認した.放電電流に関し ては,比較的安定いたが1A程度の差が出た.これはプラ ズマにする際に必要なエネルギの差によるものだと考えら れる.また,放電電圧の上昇に伴って推進効率は低下傾向 にある.これは,消費電力に見合うだけの推力が得られて いなかったことが考えられる.この原因としては,磁場形 状が最適でないことからイオンの加速が適切に行われなか ったことや設計流量の20 mg/s に対して推進剤流量が少な く充分に電離が行われていないことも予想される.また図 16より赤熱が確認された.この原因としては,先ほどと同 じように磁場が最適でなくプリュームのアノードへの熱入 力が大きくなってしまったためだと予想される.

5. 数値計算

5.1 計算方法 計算方法としては,粒子法を用いて重 粒子 (イオン,中性粒子)を計算し,流体モデルとして電 子を計算する Hybrid-PIC モデルを採用した⁴⁾.本計算のフ ローチャートを図 17 に示す.

5.2 計算領域 SPT 型である THT-VI について 2 次元 Hybrid-PIC モデルによる数値解析を行った⁵⁰. 解析モデル を図 18 に示す. 解析領域は放電室内部と出口下流の 10 mm とした.

5.3 計算条件・結果 本モデルの妥当性を検証するために表 5,6 と同条件で計算を行い比較することで本モデルの妥当性を検証する.実験結果と計算結果の比較のグラフを図 19-22 に示す.比較対象としては本学の真空チェンバを用いたものと比較している.また,推進剤本体流量 3.0 mg/s,放電電圧 700 V における最大磁場強度の違いによる チャネル内部プラズマ現象の比較も行った.最大磁場強度の違いによる 24 に示す.

図 24 電子温度分布

Fig. 19-22 において,相対誤差は推進剤流量 3.0 mg/s の場合,放電電流 23.4%,推力 11.4%,比推力 11.6%,推力 7.3% であった.また推進剤流量 4.0 mg/s の場合,放電電流 13.6%, 推力 11.0%,比推力 11.1%,推力 10.0%であった.これらの結果より,比較的実験結果と一致した.

また,最大磁場強度の違いによるチャネル内部プラズマ 現象の比較を行った.Fig.23より(a),(b)共にアノードから 25 mm まで緩やかな電位降下が見られ,そこから放電室出 口まで急激に減少する結果となった.このことから,イオ ンの加速は主にアノードから25-40 mm 付近で行われてい ることが予想される.また,Fig.24 に関しては(a),(b)共に アノードから20-30 mm の間でピークを有し,その後放電 室出口まで集中的に減少する.また,アノード付近を比較 すると(a)の方が高い結果となった.これは電子の捕捉がう まくいっておらずエネルギを持ったままアノードに到達し ていることが予想される.このことから(b)の磁場形状の方 が適していることがわかる.

6. 総括

SPT 型と TAL 型について大電圧作動を行った. THT-VI については両条件で放電電圧 1,000 V での作動を確認でき た.また,磁場形状を変更することで高電圧域での安定作 動を達成することができ,性能向上も確認できた.しかし, 放電電流値に関しては JAXA で実験を行った方が低かった がチェンバの背圧が関係していると考えられる.

RAIJIN94 については, 放電電流値は比較的安定していた が放電電圧の上昇に伴って推進効率の低下が確認された. また, 高電圧域において赤熱が確認された. このことから, 磁場形状が最適でなくイオンの加速が適切に行われていな い可能性がある. これにより, 性能の低下及び赤熱につな がったと考えられる. よって, 今後は磁場形状の最適化が 必要である.

また, THT-VI について 2 次元 Hybrid-PIC モデルによる 数値計算を行い本モデルの妥当性の検証を行った.計算結 果より実験結果と比較的一致することが確認された.

7. 今後の展望

将来の大型ミッション実現のためにホールスラスタの大 出力かつ長寿命化が求められている.寿命を制限するのは 放電室壁面の損耗であり、イオンの衝突によって引き起こ される.しかし、最近の研究で無損耗の推進機の研究結果 が報告された.これにはマグネティックシールディングと いう技術が使われており磁力線を放電室壁面と平行にする ことで壁面でのイオン損失の低減を図るものである.今後 はマグネティックシールディング技術を用いた改良型のス ラスタを設計するために数値計算等を用いて最適な設計を 目指していく.

参考文献

- 1)小紫公也,川嶋嶺, : 5kW 級ホールスラスタ RAIJIN の 共同開発,日本航空宇宙学会誌,65 巻,11 号,p.348-353,2017.
- 2)高畑侑弥, 籠田泰輔, 角間徹生, 古久保裕介, 小林充宜, 田原弘一, 高田恭子, 池田知行: 5kW級SPT:TAL型ホール スラタの性能特性, 平成27年度宇宙輸送シンポジウム, STEP-2015-031, 2016.
- 3) 古久保裕介,小林充宜,高畑侑弥,角間徹生,籠田泰輔, 田原弘一,高田恭子,池田知行:有人火星探査用大電力 ホールスラタの性能特性,第 52 回日本航空宇宙学会関 西・中部支部合同秋期大会,kcg005,2015.
- 4)藤田 剛, 戸川和也, 西田隆弘, 杉本 成, 野瀬 真, 田原 弘一, 渡辺陽介:マグネティッレイヤー型ホールスラス タのプラズマ粒子シミュレーションとその実験的検証, 第 54 回宇宙科学技術連合講演会, 3C08, 2010.
- 5) Yusuke Furukubo, Yuya Takahata, Tetsuo Kakuma, Mitsuyoshi Kobayashi, Kyohei Fujiwara, Tensei Kawakami, Hirokazu Tahara, Kyoko Takada and Tomoyuki Ikeda, "Performance Characteristics and Interior Plasma Phenomena of High-Power and High-Specific-Impulse Hall Thrusters for Manned Mars Exploration" The 35th International Electric Propulsion Conference, IEPC-2017-85, 2017.