電気推進器開発に向けたシートプラズマの ICR 加熱特性

Characteristics of the ICR heating on Sheet Plasma for Electric Propulsion Development

○西村 未来(東海大・院)・吉田 海理(東海大・学)・瀧本 壽来生(東海大・院) 利根川 昭(東海大)・佐藤 浩之助(中部電力)・河村 和孝(東海大)

○Miku Nishimura • Kairi Yoshida • Toshikio Takimoto • Akira Tonegawa (Tokai University) Kohnosuke Sato (CHUBU Electric Power Co.,Inc.) • Kazutaka Kawamura (Tokai University)

Abstract (概要)

The electric propulsion using an ion cyclotron resonance (ICR) heating in the experimental device TPD-Sheet IV has been developed to control the thrust and specific impulse.

記号の説明

- Z: 陽極からの位置
- W: 垂直プラズマ熱エネルギー
- B₀: 外部磁束密度
- R: 積分回路の抵抗
- C: 積分回路のコンデンサーの静電容量
- *A*: アンプ倍率
- μ0: 真空の透過率
- S: 反磁性ループコイルのコイル面積
- N: 反磁性ループコイルの巻き数
- Vo: アンプ後の出力電力

1. はじめに

電気推進システムは、将来の宇宙探査プロジェクトにおけ る重要な要素の1つであり、様々な宇宙ミッションのために 開発されている。 有人惑星間推進機には、より高い推力及 び比推力を有する推進機の開発が前提となる。 その理由と しては、月や小惑星への貨物輸送のための推進剤の質量を減 らすことができ、ペイロードを稼げるという点と、火星や木 星など、長期的に行われると予測されるミッションでの移動 時間の短縮などがあげられる。 現在 NASA では、2030 年ま でに火星に人類を到達させて探査を行うための具体的なプ ランとして、月に近い軌道を飛ぶ宇宙基地 Deep Space Gateway に物資や燃料、人員を運び込み、そこを拠点として 別の宇宙船 Deep Space Transport に乗って火星を目指すと発 表している^{1,2)}。また、Ad Astra Rocket Company で VASIMR (Variable Specific Impulse Magneto-Plasma Rocket) 型 VX-200 エンジンの開発が進められている。 VX-200 エンジンは、へ リコンアンテナによるプラズマの生成を行い、ICR (Ion

Cyclotron Resonance)加熱及び磁気ノズルによって、プラズマ 流の加速をおこなっている。様々なミッションに対応するた めに、推力及び比推力をより広範囲に変化させる能力を備え ており、ヘリコンアンテナによるプラズマ生成を行なってい ることから電極への損耗がなく、長寿命化が期待されている ³⁾。

プラズマ加速は、不均一磁場中の電子サイクロトロン共鳴 現象に基づいている。電子はサイクロトロン周波数近傍で共 鳴現象を起こすことで垂直エネルギーが増幅し、磁場勾配の 方向に移動し始める。 またイオンはプラズマの電荷中立性 に起因する静電界によって加速される。 イオン加速の実験 結果は、低密度プラズマ(約10¹⁸m⁻³)がイオンサイクロトロ ン共鳴によって加熱され、続いて不均一磁場によって加速さ れることが報告されている^{4,5)}。また、ダイバータプラズマ シミュレータ NAGDIS-II で、イオンサイクロトロン周波数 近傍において高密度プラズマの加熱(14kW)が実施された ことを報告している⁶。

我々の実験装置 TPD-Sheet IV (Test Plasma produced by Direct current for Sheet plasma IV)では、直流で高密度シート プラズマ (>10¹⁸m⁻³)を生成することが可能である。シート プラズマの厚さはイオンラーマ半径の約2倍と小さいため、 通常の円筒形プラズマに比べて電場が浸透しやすいと推測 される。また、シート状の中心にイオンが並列されている ため、イオン同士の衝突頻度が少なく、ICR 加熱による比較 的低い電力での効率的なイオン加熱が期待できる。本研究 では、RF (Radio Frequency)電極を変化させることによってシ ートプラズマにおける ICR 加熱の影響を調べた。

2. 実験装置

2.1 TPD-Sheet IV 図1は、TPD-Sheet IVの概略図と磁

図1 TPD-Sheet IV の概略図と磁場強度

場強度を示す。TPD-Sheet IVは、シートプラズマ源、磁気コ イル、RF 加熱部、測定部、エンドチャンバー、真空排気部 から構成されている。 主に3つの領域に分けられ、プラズ マ生成領域、加熱領域、発散磁場領域の3つの領域がある。 真空排気装置は、3台のターボ分子ポンプ(500 l/sec: 2台、 1500 l/sec:1台) と3台のロータリーポンプ (900 l/min:2 台、300 l/min:1台) で構成されている。このため、真空装 置内の到達真空度は、放電領域及び実験領域において約10 ⁴Pa (~10⁻⁶ Torr) に達する。放電電源には、主電源(100 A、 ~300 V) と予備電源(10 A、~500 V) を用いている。直流 のアーク放電により、最大100Aの放電電流で定常の直流プ ラズマを発生させることができ、磁場電源(300A、~60V) と9つの磁気コイルにより、加熱領域に最大 0.12 T の磁界 を発生させることができ、後方の 2 つの磁気コイルに繋が れている小型磁場電源(300A、~10V)を操作することによ り、磁場発散領域で様々な磁場構造を形成することができる。

実験条件は、推進ガスにはヘリウムを用いている。放電電力は 7~23 kW、小型磁場電源は 300 A、加熱電力は最大 300 W となっている。

2.2 加熱用回路 図2に加熱用回路を示す。RF 電源は、 ファンクションジェネレータ、RF アンプ、パワーメータで 構成され、その後整合回路を通り、平行平板のRF 電極に高 周波が到達する。 RF 電源の最大出力は 300 W である。整 合回路は、LC 回路と BAL-UN 回路で構成され、損失のなく 電力を伝送するように組まれている。RF 電極は、長さ 200 mm、幅 60 mm となり、電極間隔は 40 mm 及び 50 mm と変 化させた。プラズマは、2 つの平行なプレート電極の間を通

り、524kHzの高周波を印可している⁷⁾。

2.3 計測系 計測には2つの装置を用いている。図1のZ 軸方向からZ=850mmの位置に、磁力線から垂直方向のプラ ズマ熱エネルギーを計測する反磁性ループコイルがある。次 に、Z=1100mmの位置に推力測定用の振り子式ターゲット が設置されている。前方Z=800mmの位置にあるカーボンシ ャッターが1秒間上昇することによりプラズマを後方に照 射し、その際の反磁性ループコイルに流れた電流と、振り子 式ターゲットの振れ幅より、垂直方向のプラズマ熱エネルギ ーと推力の算出を行う。図3に反磁性ループコイルの概念図 を示す。ループコイルは長さ70mmの正方形のコイルとなっ ており、その巻き数は60巻となっている。蓄積されたエネ ルギーの時間微分は、ストークスの法則を用いて反磁性ルー プコイルで発生した起電力によって与えられる。旋回中央の 垂直プラズマエネルギー密度は、時間積分によって以下のよ うに計算される。

$$W_{\perp} = \frac{B_0 CR}{A\mu_0 SN} V_0 \quad [J/m^3] \tag{1}$$

ここで、 B_0 は外部磁束密度、 $R \ge C$ は積分回路の抵抗とコ ンデンサーの静電容量、Aはアンプの倍率、 μ_0 は真空の透過 率、Sはコイルの面積、Nは巻数で、 V_0 は積分回路からの出 力電圧である⁸。

図4に振り子式ターゲットの概念図を示す。振り子型ター ゲットは、長さ100mm、幅150mm、厚さ0.3mmのモリブデ ンの板となっており、振り子の総重量は109gである。 ター ゲットの振れ幅は、ターゲットの後ろのレーザー変位計で測 定し、推力を計算した^{9,10}。

3. 実験結果

図5に RF 電力0W 時の放電電流と垂直方向のプラズ マ熱エネルギーの関係を示す。放電電流が上昇するごとにプ ラズマ熱エネルギーも上昇することから、正常に作動してい ることがわかった。次に、RF 加熱を行なった際のプラズマ 熱エネルギーを調べた(図6)。加熱時に得られたエネルギ ーから加熱なしのプラズマ熱エネルギーを引くことで、加熱 電力毎の浸透エネルギーを算出した。図は黒のプロットが RF 電極が 50mm、赤のプロットが 40mm となっている。全 ての放電電流で RF 電極が 40mm の場合の方が、より加熱さ れていることがわかる。また、RF 電力が 300W の場合が最 も加熱効率が良いことがわかった。次に図7にRF電力と推 力の関係を示した。放電電流が 30,40,50 A どの場合でも電 極間隔が 40 mm の方が、推力が高い結果が得られた。しか し、放電電流 30,40A において、プラズマに浸透した熱エネ ルギーに比べて、推力の上昇率が低い、これは加熱によって 上昇した垂直方向のエネルギーが平行方向の加速にうまく 変換されていないと予想される。

4. まとめと今後の予定

本研究では、RF 電極を変化させることによってシートプ ラズマにおける ICR 加熱の影響を調べた。始めに、放電電 流と RF 電力が上昇する毎に垂直プラズマ熱エネルギー及

図4 振り子式ターゲット

図5 放電電流とプラズマ熱エネルギーの関係

び推力は上昇傾向が見られた。その値は電極間隔が 40 mm の場合の方が大きい。しかし、プラズマ熱エネルギーと推 力では同じ上昇率が見られ図、プラズマに透過している熱 エネルギーに比べ、推力が得られていない結果がでた。こ の原因としては、垂直方向に増加したエネルギーが平行方 向のイオン加速へと上手く変換がされていないことが考え られる。今回得られた TPD-Sheet IV の推進性能を表1に示 す。

表1 TPD-Sheet IV の推進性能

推進ガス	Не
投入電力 [kW]	7~23
RF 電力 [W]	0~300
推力 [mN]	1.1~5.9
比推力 [s]	840~4500
推進効率 [%]	10~86

以上の結果より、今後の予定としては、磁場発散と推力の関係を明らかにしていくことを目標とする。また、300W

図6 RF 電力とプラズマ熱エネルギーの関係

図7 RF 電力と推力の関係

以上の RF 加熱を目指し、真空容器の見直し及び設計が重 要となってくる。さらに、宇宙への長期利用を考えると、 無電極放電が必要となってくると考えられる。よってフィ ラメントレスの放電領域の設計も考えて行きたい。

5. 参考文献

- A. Ando, K. Takahashi, Y. Izawa, K. Suzuki, Y. Hoshino, IEPC-2013-338, 33th Int. Electric Propulsion Conference, 2013.
- A. Ando, JAXA research and development report. JAXA-RR-09-003, 2010 (in Japanese).
- 3) Benjamin W. Longmier, Jared P. Squire, Leonard D. Cassady, Maxwell G. Ballenger4, Mark D. Carter5, Chris Olsen6, Andrew V. Ilin 7, Tim W. Glover 8, Greg E McCaskill9, Franklin R. Chang Díaz, IEPC-2011-156, 32nd Int. Electric Propulsion Conference, 2011.

- 4) H. Toyama, M. Okabayashi and H. Ishizuka, Plasma Phys., 10, 319, 1968.
- 5) S. Miyake, T. Sato and K. Takayama, J.Phys.Soc. Japan, 27, 1611, 1969.
- Y. Uesugi, T. Imai, H. Sawada, N. Hattori, S. Takamura, Vacuum, 59, 24, 2000.
- 7) T. Iijima, S. Hagiwara, Fusion Science and Technology. Vol.63, No. 1T, 417-419, 2013
- 8) Y. Amagishi, J. Phys. Soc. Jpn, 55, 2504, 1986.
- D. Kuwahara, Y. Koyama, S. Otsuka, T. Ishii, H. Ishii, H. Fujitsuka, S. Waseda and S. Sshinohara, Plasma and Fusion Research, 9, 3406025, 2014.
- 10) T. Suzuki, N. Koyama, Y. Sugiyama, H. Sakoda, and H. Tahara, IEPC-2015-197, 34th Int. Electric Propulsion Conference, 2015.