レーザー励起ブレイクダウンによる低毒性1液推進剤の着火特性

○古澤雅也, 勝身俊之, 門脇敏 (長岡技術科学大学) Email: <u>s143076@stn.nagaokaut.ac.jp</u>

Ignition characteristics of human-friendly monopropellant by laser-induced breakdown

Masaya Furusawa, Toshiyuki Katsumi, Satoshi Kadowaki (Nagaoka University of Technology)

HAN 系1液推進剤を対象にレーザー点火実験を行い,点火特性を取得した.従来,1液スラスタに用いられているヒド ラジンは毒性が高いことから取り扱いが困難である.低毒性の HAN 系1液推進剤を用いることで作業にかかるコスト や時間の削減が期待できる.また,レーザー点火では触媒点火のように高温,酸化雰囲気において劣化することがほと んど無く,衛星の長寿命化が期待できる.本研究では,点火実験で取得した HAN系1液推進剤の点火特性の評価を行う.

Key word: Green monopropellant, Hydroxyl ammonium nitrate, Laser ignition, Pressure measurement, Droplet behavior

1. 研究背景

人工衛星の姿勢や軌道の制御のために使われる推進器 には、低コスト化、安全性及び推進性能の向上が求められ ており、近年その研究が進められている.従来、1 液スラス タの推進剤として採用されているヒドラジン (N₂H₄) は 毒性が高いため、安全性と取り扱いにかかるコストと時間 が問題点として挙げられている.これらの問題点を克服す るためにヒドラジンに代わる推進剤として, Hydroxyl Ammonium Nitrate (HAN) 系 1 液推進剤が注目されてい る. HAN 系1液推進剤は、ヒドラジンよりも低毒性である だけでなく,低凝固点,高密度といった特徴があり,推進 剤タンクの省スペース化や温度管理の電力を節約するこ とができる. 我々は HAN 系推進剤の中でも HAN の高い 燃焼速度を低下させるため、HAN にメタノールを添加し た SHP163 (HAN / Ammonium nitrate / H₂O / Methanol = 73.6 / 3.9 / 6.2 / 16.3) に着目した.¹⁾ SHP163 とヒドラジ ンを比較すると、毒性が抑制されているだけでなく、断熱 火炎温度も約3倍高い値を示しており、優れていることが わかる. (Table 1)²⁾ 推進剤の高い断熱火炎温度は比推力の 向上につながるため、SHP163は高性能な推進剤といえる.

Table 1. Properties of hydrazine and SHP163²⁾

		N_2H_4	SHP163
Density [g/cc] 20°C		1.0	1.4
Freezing point [°C]		1.4	<-30
Specific impulse <i>Isp</i> [s]		233	276
Flame temperature [°C]		598	2121
Toxicity	LD ₅₀ Oral	60	500-2000
[mg/kg]	LD ₅₀ Skin	91	>2000

従来のヒドラジンを用いた1液スラスタでは、イリジウムを触媒とした触媒点火方式が採用されている.しかし、 SHP163の場合、燃焼によって燃焼器内が高温酸化雰囲気 となり, 触媒の変質や熱応力による触媒の破損が起こる 問題点がある. 触媒の劣化や破損は推進性能を低下させ, 人工衛星の寿命の低下につながる. また, 触媒点火方式の 場合, 触媒の予熱が必要であり, スラスタ起動までに時間 がかかり, 即時起動が困難である.

我々は、チャンバー内部に構造物を必要としないレーザ ー点火に着目した.レーザー点火方式は触媒を必要とせず、 点火のタイミングを任意に設定でき、即時起動が可能であ る.これまでレーザー機器は大型であり、重量があるため、 宇宙機器への使用は困難であると考えられえていた.近年、 マイクロチップレーザーの開発が進められ、宇宙機器への 実現可能性が高く見込まれる.また、他の研究者の文献に よると、HAN 系推進剤はレーザーによって点火できると 報告されている.³また、HAN 系1液推進剤はレーザー照 射によって、化学反応を開始することがわかっている.⁴ 以上のことから、本研究では、HAN 系推進剤である SHP163を対象としたレーザー点火実験を行い、圧力測定 及び液滴の挙動観察による着火特性の取得を行い、レーザ ー点火の実現可能性を評価する.

2. 実験装置及び方法

レーザー点火実験では、チャンバー内に懸垂させた SHP163の液滴にパルスレーザーを照射し、チャンバー内 部の圧力測定と液滴挙動の撮影を行った. Fig.1 は本研究 で用いる実験装置の概要図である.

チャンバー内の圧力測定には圧力センサ(Honeywell FP2000)を用い,液滴挙動の観察には CCD カメラ (Imager SX 4M)を用いた.また,レーザーの出力は 10mJ から 60mJ の範囲とし,圧力のサンプリング速度は 1kHz とした.

本実験では、HAN系推進剤である SHP163 を対象にレー ザーを照射した際の、レーザー波長 532nm、焦点距離 120mm における条件でチャンバー内の圧力上昇の最大値 を調べた.

3. 実験結果及び考察

3.1 圧力測定

圧力の時間履歴からレーザー入射後, チャンバー内の圧 力は急激に上昇し,降下した後に一定の圧力値まで上昇し ていることがわかる.レーザー入射直後の圧力上昇はレー ザーのブレイクダウンによる圧力波の生成によるためで あり,その後の圧力の降下はブレイクダウンによる空気の 膨張後の収縮が起こったためである.また,レーザーエネ ルギーの上昇に伴って,圧力上昇値の最終的な圧力値が上 昇している.Fig.3 より,レーザーエネルギー40mJ以上で 最終的な圧力上昇値が約70Pa に収束していることがわかる. これはSHP163の液滴が吸収できるレーザーエネルギーに限界があるためと考えられる.

圧力上昇の最大値は、レーザーエネルギーが 60mJ の時、 76Pa であった. SHP163 が完全燃焼した場合の理論的な 圧力値と実験値を比較するため、燃焼生成物である H_2O , CO₂, N₂, O₂のガス体積V_aを Eq. (1)より求めた.

$$V_g = \sum_{j=1}^{m} \sum_{i=1}^{n} \frac{N_j V_{std} m_i}{M_i}$$
(1)

ここで、 N_j は反応物 i 1mol に対する生成物 j のモル数、 M_i は反応物 i のモル質量、 V_{std} は標準状態における気体 1mol の体積 22.4mL、 m_i は反応物 i の物質量を示している. Eq. (1)より求めた V_g を用いて、理論的な圧力上昇値Pを Eq. (2) より算出する.

$$P = \frac{P_0(V_c - V_l + V_g)}{V_c} - P_0$$
(2)

ここで、 P_0 はチャンバー内圧力、 V_c はチャンバー内の体 積、 V_1 は液滴の体積、を示している. Eq. (1)と(2)より、 平衡状態の温度を 25℃として得られた理論的な圧力上昇 値は、342Pa であった.

レーザーエネルギー60mJ 実験値と理論値を比較すると, 実験値はかなり低い値である.これはレーザーブレイクダ ウンによる SHP163 の分解反応が液滴の一部でのみ起こ っているためと考えられる.

3.2 液滴挙動の撮影

Fig.4 はレーザー照射から 10μ 秒後, 30μ 秒後 の液滴の 挙動をレーザーエネルギー20 mJ(a), 40 mJ(b), 60 mJ(c)ご とに示している. レーザーはそれぞれの図の左側から入射 している.

Fig. 4 よりレーザーエネルギーの入射と同時に液滴の飛 散する様子が観察された.飛散の様子はレーザーエネルギ ーの違いによって異なり, 20mJ の時は入射側と反対側に 飛散し, 40mJ の時は片側に偏らず,全体的に飛散してお り,そして 60mJ の時は入射側に飛散している.また 40mJ, 60mJ では,レーザー入射時,発光が確認された.

レーザーエネルギーに依存するパラメータとして,レー ザーの焦点付近のエネルギー密度がある. Eq. (3) にエネ ルギー密度 F の式を示す.

$$F = \frac{4W}{\pi d^2} \tag{3}$$

Eq. (3) において, W はレーザーエネルギー, d はビーム径 を表しており, レーザーエネルギーとエネルギー密度は比 例関係にあることがわかる. レーザー光線はレンズによる 球面収差が原因で, 焦点が集光光学系側に形成され, 集光 位置における光強度は弱くなることがわかっている.⁹ こ れを考慮すると, 焦点位置付近のエネルギー密度やプラズ マの発生量が異なり, 焦点以外の位置でのブレイクダウン が起こり, 液滴の飛散が異なったと考えられる.

また,全て気化せず液滴が飛散する様子が観察されたことから,SHP163の液滴の全てが分解していないといえる. したがって,チャンバー内圧力上昇値が実験値に比べて,

低い値になることがわかる.

(Shadowgraph image)

4. 結論

HAN 系推進剤である SHP163 を対象としたレーザー点 火実験より, チャンバー内の圧力上昇が確認された. チャ ンバー内の圧力上昇値は, レーザーエネルギー40mJ 以上 の時,約70Paで収束した. この値は理論値と比べて小さ いため, 液滴の一部でのみ分解反応が起こっていると考え られる. また, SHP163 の液滴はレーザーの入射によって 飛散し, エネルギーの違いによって飛散の様子が異なるこ とが確認できた. これは焦点位置付近のエネルギー密度が 異なり, プラズマの発生量の違いが影響していると考えら れる.

以上の得られた結果から, SHP163 の液滴全体が分解反応する条件を調べることが今後の課題となる.

参考文献

- S. Togo, H. Shibamoto and K. Hori: Improvement of HAN-based liquid monopropellant combustion characteristics, international workshop HEMs 2004, 2004
- T. Katsumi, Rachid Amrouse, Y. Niboshi, K. Hori: A study of the combustion mechanism of Hydroxylammonium nitrate, International Journal of Energetic Materials and Chemical Propulsion, 14 (4), 307-319, 2015
- Angelo J. Alfano, Jeffrey D. Miles, and Ghanshyam L. Vaghjiani: Resonant laser ignition study of HAN-HEHN propellant mixture, Combustion Science and Technology, 181, 902-913, 2009
- T. Katsumi, S. Kadowaki: Laser ignition experiment of HAN-based monopropellant, 4th Laser Ignition Conference, 2016

- T. Hori, F. Akamatsu, M. Shibahara, D. Miyata, M. Katsuki; Effect of aberration on laser-induced breakdown, Journal of high temperature society, 31-2, 122-128, 2005
- T. Hori, F. Akamatsu, M. Shibahara, D. Miyata, M. Katsuki; Laserinduced breakdown analysis using Nd: YAG laser, Journal of high temperature society, 31-1, 19-25, 2005