ブーゼマンの複葉翼理論を応用した熱交換器フィンの伝熱特性

○大和一貴(静大院), 吹場活佳(静大院), 水田和希(静大院), 丸祐介(JAXA)

Heat Transfer Characteristics of Fins for Heat Exchanger Applying Busemann's Biplane Theory

Kazuki YAMATO, Katsuyoshi FUKIBA, Kazuki MIZUTA, and Yusuke MARU

記号

c	[J/(kg•K)]	比熱
C_H	[-]	スタントン数
C_p	[J/(kg·K)]	定圧比熱
h	[m]	フィン高さ
L	[m]	フィン全長
М	[-]	マッハ数
т	[kg]	フィンの質量
Pr	[-]	プラントル数
P_0	[Pa]	主流全圧
q	[W/m ²]	熱流束
Re	[-]	レイノルズ数
S	[m ²]	伝熱面積
Т	[K]	静温
t	[s]	時間
T_{aw}	[K]	断熱壁温度
T_w	[K]	フィン壁温
T_0	[K]	主流全温
и	[Pa]	主流速度
у	[-]	フィン壁面からの距離
λ	[W/(m·K)]	主流の熱伝導率
μ	[Pa·s]	主流の粘度
θ	[°]	フィン先端の半頂角
ρ	[kg/m ³]	主流の密度

1. 緒言

宇宙航空研究開発機構(JAXA)は長期ビジョンにて、将 来の航空輸送のブレークスルーとして超音速/極超音速 機技術の研究開発を掲げている^[1].マッハ2の超音速飛 行が可能になると、ニューヨーク-ロサンゼルス間の北 米大陸横断では約2.5時間での飛行が可能となり、世界 の主要都市を含む多くの地域間の移動が6時間圏内にな ると言われている^{[2][3]}.

過去に唯一実用化された超音速旅客機であるコンコ ルドは、大西洋を約3時間半で横断した.しかし、燃費 の悪さや航続距離の短さといった経済性と、衝撃波や騒 音といった環境適合性の問題を抱えており、低運賃競争 の激化や燃料価格の高騰による運用コストの高さ、騒音 問題、墜落事故等の問題が重なり、2003年に運航を停止 している.そして、現在運航中の超音速旅客機は存在し ない^{[4][5]}.

また近年では、JAXA を中心に極超音速旅客機用空気 吸い込み式エンジンの開発が進められている^[6].極超音 速機に用いられるエンジンにはプリクーラ付きターボ ジェットエンジン(PCTJ)が用いられている. PCTJ では エンジン内に流入した空気を圧縮機通過前で燃料であ る液体水素により冷却する^[7]. 流入した空気を十分に冷 却するため、PCTJ を搭載する航空機では、流入空気冷 却用として量論混合比を上回る燃料を積載する必要が ある. しかし先述の通り、燃費の悪さといった経済性は 超音速旅客機の実現に向けての大きな課題として挙げ られており, 燃費の悪さを助長する量論混合比を上回る 燃料の使用は避けたいところである.そこで, 液体水素 の代わりに外気流を冷媒としてコア流を冷却すること を考える.しかし,エンジン内部のコア流の冷却に外気 流を使用するためには,コア流と外気流との間に温度差 が必要となる.エンジン流入直後の空気は外気流との温 度差がないため, PCTJ のように圧縮機通過前での空気 の冷却は不可能となる.

外気流を利用した冷却を可能とする方法としては、中 間冷却が挙げられる.図1に中間冷却器付きブレイトン サイクルの模式図と T-S 線図を示す. T-S 線図によって 囲まれた面積がエンジンの行う仕事となるため、この面 積の増加がエンジン出力の増加につながる.中間冷却で は、エンジン流入後の空気を低圧圧縮機で圧縮し、コア 流の温度を上昇させることによって、低圧圧縮機通過後 のコア流と外気流との温度差を作り出し、低温の冷媒を 使用することなくコア流の熱交換を可能とする.また、 タービン入口温度が高すぎると燃焼器下流のタービン が高温に耐えられず溶けてしまうため、燃焼温度には上 限が存在する.中間冷却器で圧縮途中のコア流を一度冷 却することにより、燃焼器入口温度の低下を可能とし、 燃焼温度の上限を超えずにエンジン出力を増加する.

(a) 模式図

本研究では、超音速で飛行するターボジェットエンジ ンへ中間冷却器を組み込むことを目標とした研究を行 う.外気流とコア流との熱交換を行うため、エンジン外 部に中間冷却器の熱交換器フィンを設置する.超音速飛 行では、エンジン外部に設置された熱交換器フィンに超 音速流が当たり、この熱交換器フィン部分での圧力抗力 が増大することが容易に想像できる.そこで我々は、熱 交換器フィン部分での圧力抗力の増大を最小限に抑え ることを目標として、フィン形状にブーゼマンの複葉翼 理論を応用した中間冷却器の熱交換器フィンを設計し た.

本研究では、ブーゼマンの複葉翼理論を応用した熱交換器フィンの伝熱性能を検証するために風洞実験を行った.風洞実験では設計したフィンの風洞モデルを製作し、超音速風洞で通風した際の温度変化よりフィンの伝熱性能を調査した.また、実機への適用を試算することによって、中間冷却器を組み込んだターボジェットエンジンの有用性の考察を行う.

2. フィン形状

本研究では,超音速機に搭載するエンジンに中間冷却 器を組み込み,エンジン外部の超音速流と熱交換を行わ せることを想定している.そのため,中間冷却器の熱交 換器フィンはエンジン外部に設置され,超音速巡行中に はフィンに超音速流が衝突し,フィンにおいて圧力抗力 が上昇することが容易に予想できる.そこで,本研究で はブーゼマンの複葉翼理論を用い,超音速流中に配置さ れた熱交換器フィンでの圧力抗力の上昇を最小限に抑 えることを目標にフィン形状の設計を行った.

ブーゼマンの複葉翼理論では、それぞれのダイヤモン ド翼の前縁で発生した衝撃波がもう一方の翼の翼弦中 央付近の頂点に当たるように、マッハ数に対応したフィ ン形状を設計する.互いの前縁より発生した衝撃波がも う一方の翼の頂点に当たることで、頂点から発生する膨 張波の一部が衝撃波を相殺する.そして、均一な圧力分 布が生じ、圧力抗力はゼロとなる^[8].抵抗が消失するの は、系の外に全く波が存在しないことに対応している. また、設計点を外れたマッハ数では、抵抗は部分的に相 殺される.この場合においては、波が系から抜け出し抵 抗はゼロではなくなる^[8].本研究では、設計点となる超 音速機の巡行マッハ数を*M*=2.0と設定し、このマッハ数 においてフィン前縁で発生した衝撃波がフィン頂点に 当たるようにフィン形状の設計を進めた.

フィンは内部に低圧圧縮機で圧縮を行うことによっ て温度が上昇したコア流を流し、エンジン外部を流れる 超音速流と熱交換を行う.そこで、フィンには内部にコ ア流を流せるだけの厚さおよびフィン先端の半頂角を 設定する必要がある.また、フィン先端の半頂角が小さ すぎると、超音速流が衝突した時に空力加熱によりフィ ンが溶ける恐れがある.そこで、本研究ではフィン先端 の半頂角を 7 [°]に設定し、フィンに厚みをもたせた.

しかし、ブーゼマンの複葉翼理論は薄翼を想定した理 論であるため、フィンの半頂角を大きくとりフィンに厚 みを持たせると、フィンは不始動となりフィンの間に超 音速流が流れない.図2にフィンの始動、不始動を決定 する Kantrowicz 線と、半頂角7[°]のダイヤモンド翼を 用いた場合に圧力上昇の相殺が可能となる翼間距離を 示す.フィンを始動させるためには、図2で各マッハ数 において翼間距離が Kantrowicz 線の上に位置する必要 がある.図2に示す通り、本研究において内部にコア流 を流せるようにフィン厚さおよびフィン先端の半頂角 を7[°]に設定したダイヤモンド翼では各マッハ数において基本的に不始動となり,抗力低減が困難となる.

そこで本研究では,設定した巡行マッハ数 M=2.0 でフィンが自然始動可能となるように,フィン同士が向かい 合う頂点を削り,フィン同士の間隔を確保した.結果と して本研究で用いたフィン形状は六角形となる.図3に フィン全長を1とした時の本研究で設計したフィンの基 本寸法を示す.次章以降で使用する熱交換器フィンの形 状は,この基本寸法からフィンおよびフィン間の距離を 相似的に拡大したものを使用する.

なお、本研究で設計したフィン形状は、CFD 解析を利 用することによって、マッハ数 M=2.6 で圧力抗力係数が 最小値を示すことを確認した.設計した六角形フィンに おいては、隣のフィンで発生する衝撃波をフィン後方の 角に入射させることで抗力の上昇を最小限に抑えるこ とができる.これには、フィン後方の角で発生する膨張 波による圧力下降と衝撃波の入射による圧力上昇とを 相殺させることが重要となる^[9].

3. 風洞実験

本章では、ブーゼマンの複葉翼を応用した熱交換器 フィンが実際に超音速流中に置かれた際の熱流束を調 査するために実施した超音速風洞実験について述べ る.本実験では、超音速流と熱交換を行わせたフィン の温度の時間変化より熱流束を算出し、評価を行っ た.

3.1 実験模型

図4に実験模型全体図を示す.スティングの先端にフィンを固定し、フィンの温度計測を行う.本実験で使用したフィンには、2.章のフィン形状にて示した形状を採用し、フィン全長が異なる2種類の風洞模型を使用した.

フィン全長が L=70 [mm]のものを model70, L=35 [mm]も のを model35 とする. 図 5(a)に model70, (b)に model35 のフィン部分の拡大写真を示す. model70 は気流と平行 にフィンが3枚設置されており、中央のフィンには熱電 対とヒーターが埋め込まれている. model35 は気流と平 行にフィンが4枚設置されている.フィンサイズが小さ く、フィンの土台への固定が難しいため、中央2枚のフ ィンは土台を共有した削り出しの一体成型となってい る. また, フィン内部に熱電対とヒーターを埋め込むこ とが不可能であるため, 土台部分に熱電対とヒーターが 埋め込まれている. 両模型とも, ヒーターによりフィン を加熱することで、気流とフィンとの間で温度差を作り、 気流がフィンの間を通過することで熱交換を行う.また, フィンは銅製で熱伝導率が高いため、フィン温度が均一 であると仮定し,熱電対によりフィン温度の時間変化を 測定した.

3.2 実験方法

本実験では、ヒーターでフィンを加熱することによっ てフィンと超音速流との間に温度差を作り熱交換を行 わせた.実験開始前のフィン温度は70[℃]を目標とした. 制御室で収録装置の遠隔操作により温度を確認しなが ら、中間スイッチを用いて手動で ON-OFF 制御を行った. 通風開始と同時にフィンの加熱を停止し、超音速流によ る強制対流によってフィンを冷却した.熱電対および収 録装置によって、フィンの時間に対する温度変化を計測 し、そこから熱流束を計算する.

3.3 実験条件

本実験ではマッハ数を *M*=3.0 で固定して実験を行った.また,風洞全圧および模型の変更に伴うフィンサイズの変更によってレイノルズ数を変化させた.表1に実験条件をまとめて示す.

3.4 評価方法

本実験では超音速流によって冷却されたフィンの温 度の時間変化を計測した.そこから,フィンの熱流束を 計算によって求める.式(1)に熱流束 q を求める計算式を 示す.

$$q = \frac{mc}{S} \frac{dT_w}{dt} \tag{1}$$

ここで、mはフィン質量、cはフィンの比熱、Sはフィン の伝熱面積、 T_w は実験で計測したフィン温度、tはサン プリング周期である.ここで、 dT_w は計算する点の前後 2点を使い、二次精度とした.

超音速流中における熱流束は式(2)によって表される ことが知られている^[10].

$$q = C_H \rho \mu C_p (T_w - T_{aw}) \tag{2}$$

ここで、 C_H はスタントン数、qは熱流束、 ρ は密度、uは 主流速度、 C_p は定圧比熱、 T_{av} は断熱壁温度、 T_w はフィ ン温度である。断熱壁温度は熱交換を行う物体の平衡状 態における温度であり、本実験においてはフィンの冷却 が進み、熱流束がゼロとなる点の温度である。

図 6 に平板のマッハ数に対する $C_H\sqrt{Re_x}$ を示す. M=0~4程度の領域において,平板ではスタントン数にレ イノルズ数の平方根を乗じたものがほぼ一定の値を示 すことが知られている^[10].

また,翼弦長を代表長さにとった場合,スタントン数 にレイノルズ数の平方根を乗じたものは式(3)と示すこ とができる.

$$\overline{C}_{H}\sqrt{\operatorname{Re}_{L}} = 2C_{H}\sqrt{\operatorname{Re}_{x}}$$

$$= 2Const.$$
(3)

図4 実験模型全体図

(a) model70

(b) model35図 5 フィン部分

表	そ1 実験条件	
マッハ数	模型	Re 数
		1.3×10^{6}
	model70	1.5×10^{6}
3.0		1.8×10^{6}
	model25	$0.7 imes 10^{6}$
	model55	$0.9 imes 10^{6}$

3.5 実験結果

3.5.1 レイノルズ数変化の影響

レイノルズ数の変化が熱流束に及ぼす影響について 調査する.図7に model70 におけるフィン温度に対する 熱流束を示す.傾向がフィンサイズに依らないことを確 認するため、フィンサイズを変更した際のレイノルズ数 による熱流束の変化も確認する.図8に model35 におけ るフィン温度に対する熱流束を示す.各条件における近 似直線の傾きと切片の平均をとり、その平均値より計算 した熱流束により比較を行う.

図 7 では Re=1.3×10⁶の値を基準とすると, Re=1.5× 10⁶の値は 315 [K]において 1.16 倍, 330 [K]において 1.14 倍となる. また, Re=1.8×10⁶の値は 315 [K]において 1.37 倍, 330 [K]において 1.35 倍となる. 次に図 8 では Re=0.7 ×10⁶の値を基準とすると, Re=0.9×10⁶の値は 315 [K]に おいて 1.18 倍, 330 [K]において 1.16 倍となる. これよ り, フィンサイズに依らずレイノルズ数が上昇すると熱 流束が上昇することが確認できる.

レイノルズ数は慣性力と粘性力の比を表した無次元 数である.すなわち、レイノルズ数が上昇すると、慣性 力が支配的になる.本実験においても、レイノルズ数が 上昇することで流れにおける慣性力が支配的になり、温 度境界層が薄くなったことが考えられる.そこで、本研 究で用いたフィンを模したグリッドを使用した数値解 析より、フィン周りの温度分布の計算を行った.図9に フィン中央部分でのフィンに対して垂直方向の温度分 布を示す.フィン近傍の壁面からの距離が同じ位置での 流体温度を比較すると、レイノルズ数が大きいほど流体 温度が主流温度に近いことが確認できる.すなわち、数 値解析からもレイノルズ数が上昇することによって温 度境界層が薄くなることが確認できる.これより、レイ ノルズ数が上昇することで境界層が薄くなり、熱流束が 上昇したと考えられる.

また,超音速流中の熱流束の式より,レイノルズ数の 上昇が熱流束の上昇に繋がる原因を考える.式(2)および 式(3)より,超音速流中における熱流束は式(4)で示され る.

$$q = C_{H} \rho u C_{p} (T_{w} - T_{aw})$$

= 2Const. $\sqrt{\text{Re}_{L}} \operatorname{Pr} \frac{\lambda}{L} (T_{w} - T_{aw})$ (4)

ここで, *λ*は流体の熱伝導率, *Pr*はプラントル数である. 式(4)からも, 超音速流中においてレイノルズ数の上昇に よって熱流束が上昇することが説明できる.

3.5.2 熱流束の予測

式(2)を用いてフィンの熱流束を予測する.計算を進め るにあたり、これらの式に使用するマッハ数について考 える.図10に本研究で使用する六角形のフィンと、フ ィンに超音速流が当たった場合に発生する衝撃波と膨 張波の模式図を示す.フィンを前方の斜面部分と中央の 平行部分、後方の斜面部分の3ブロックに分け、それぞ れを第一セクション、第二セクション、第三セクション とする.それぞれのセクションのマッハ数を以下の3通 りに設定し、算出される熱流束の違いについて議論する. まず、Case A として、どの位置においてもフィン表面の マッハ数が主流マッハ数と等しいと仮定する.次に、 Case B として、超音速流中にフィンが単体で配置されて いると仮定する.この場合、フィン前縁で超音速流が変 向することで衝撃波が発生し、第一セクションのマッハ 数 *M1* は主流のマッハ数 *M* よりも低下する.その後、前

図 7 フィン温度に対する熱流束(model70)

図 8 フィン温度に対する熱流束(model35)

方の頂点で膨張波が発生し、第二セクションのマッハ数 M2 は上昇する.後方の頂点で再び膨張波が発生するこ とで第三セクションのマッハ数 M3 は再度上昇し、フィ ン後縁で衝撃波が発生することで後流のマッハ数は主 流マッハ数 M と一致する.フィン前縁での衝撃波通過 後のマッハ数を斜め衝撃波の計算により求めた.また、 前方と後方における膨張波通過後のマッハ数はプラン トルマイヤー関数を用いて求めた.最後に、Case C とし て、フィンが並んで配置されブーゼマンの複葉翼理論が 成立したと仮定すると、フィン前縁で発生した衝撃波の 入射による圧力上昇と後方の頂点で発生した膨張波に よる圧力下降が相殺され、第三セクションで全圧が回復 する.よって、第一セクションのマッハ数 M1 と第三セ クションのマッハ数 M3 が等しくなる.表 2 に各仮定に おけるセクションごとのマッハ数をまとめる.

表2にまとめたマッハ数を使用し,各セクションでの 熱流束を式(2)より求めた.そして,その熱流束をセクシ ョンごとの伝熱面積を用いて重み付き平均を行い,各仮 定での熱流束とした.図11にmodel70, *M*=3.0, *Re*=1.3 ×10⁶の条件における実験値と各仮定を用いて計算した 理論値を示す.表3にフィン温度 T_w=325 [K]における実 験値を基準とした各仮定での熱流束の誤差をまとめる.

表3に示したように, model70, M=3.0, Re=1.3×10⁶の 条件について、Tw=325 [K]においての実験値と各仮定と を比較すると、Case A では 35.7%、Case B では 37.4%の 誤差での予測となった. Case B においては第一セクショ ンで減速するが、第三セクションでの加速によって第一 セクションでの減速分を相殺するため, Case A と差が開 かない結果になったと考えられる. また, Case C では 18.1%の誤差での予測となり、他の2つの仮定よりも実 験値に近い値となった. これはレイノルズ数が変化して も同傾向の結果が得られた.また,フィンサイズを変更 しても同傾向の結果が得られた.これより、ブーゼマン の複葉翼理論の成立を仮定し、 フィンの各セクションに おけるマッハ数に対する熱流束を求めることで、約20% の誤差での熱流束の予測が可能であることを確認した. これは、主流マッハ数やフィン単体での仮定よりも精度 の良い予測である.しかし、ブーゼマンの複葉翼理論を 用いた場合においても誤差が生じている.原因として, 実験ではフィンの伝熱部分以外からの放熱が起こり,熱 流束が理論値より大きな値を示している可能性が考え られる.また、使用した理論値は平板におけるものであ ることも原因のひとつとして考えられる.

表	2 各仮定	ミとセクシ	ョンごと	のマッハ	
仮定	主流	M1	M2	<i>M3</i>	後流
Case A	3.0	3.0	3.0	3.0	3.0
Case B	3.0	2.65	2.99	3.38	2.99
Case C	3.0	2.65	2.99	2.65	2.99

図11 実験値と理論値の比較

表3	実験値と	各仮定におけ	る予測と	との誤差	Tw=325 [K]
----	------	--------	------	------	----------	------------

模型	Re 数	Case A	Case B	Case C
model	$0.7 imes 10^{6}$	36.8%	39.4%	22.6%
35	0.9×10^{6}	39.5%	41.2%	24.8%
	1.3×10^{6}	35.7%	37.4%	18.1%
70	$1.5 imes 10^{6}$	37.1%	40.0%	21.5%
	1.8×10^{6}	43.7%	45.5%	28.7%

4. 実機への適用

本章では、超音速機のターボジェットエンジンに中 間冷却器を組み込んだ場合の試算を行う. 中間冷却器 の熱交換器フィンには、本研究で使用しているブーゼ マンの複葉翼理論を応用した六角形のフィンを使用 し,超音速流と熱交換を行うことを想定する.

4.1 評価方法

図 12 に中間冷却器付きターボジェットエンジンの模 式図を示す. 主流の一様流は(0)-(1)のインテークを通過 してエンジン内部へ吸気され、(1)-(2)の低圧圧縮機で圧 縮される. 圧縮されたコア流は(2)-(3)の中間冷却器で冷 却された後、(3)-(4)の高圧圧縮機で再度圧縮される.本 試算における低圧および高圧圧縮比は、圧縮機のどの 位置で中間冷却を行うかを示すものである. 圧縮空気 は(4)-(5)の燃焼器でタービン入り口温度 T5=1673 [K]ま で加熱され、(5)-(6)のタービンおよび(6)-(7)のノズルを 通過して大気へ排気される. 上記の各過程における全 温 Toおよび全圧 Poの計算より,評価基準を求める. 圧 縮機での圧縮およびタービンでの膨張は等エントロピ 一的に行われるものとした.

4.2 評価条件

本試算に用いる中間冷却器の熱交換器フィンは 2.章 のフィン形状で設計した形状を使用した.飛行高度はコ ンコルドを参考に決定した.また,その高度における大 気の諸元を標準大気表より読み取った.表4に本解析で 使用した主流の諸元をまとめる.

フィンの材質は、実験と同様に銅を用いた. エンジン の燃料にはケロシンを用いることを仮定する.表5に本 試算に用いるエンジンの諸元をまとめる.

評価結果 4.3

4.3.1 中間冷却器を組み込まない場合

各評価基準における中間冷却器の効果を確認するた めに,まずは中間冷却器を組み込まない純粋なターボジ ェットエンジンの推力および比推力を求める. 中間冷却 器を組み込まない純粋なターボジェットエンジンのサ イクルの計算は中間冷却器における冷却量を 0 [K]にす ることと同義である. 表 6 に, 全圧縮比 π =15 における 中間冷却器を組み込まないターボジェットエンジンの 結果を示す.表6に示した結果を基準として次項以降の 評価を行う.

4.3.2 圧縮比割合の変更による効果

中間冷却器を組み込んだジェットエンジンでは, 圧縮 機を低圧側と高圧側に割り振り、低圧圧縮機通過後の温 度が上昇したコア流を中間冷却器で冷却させた後に高 圧圧縮機で再度圧縮を行う.よって、割り振った各圧縮 機における圧縮比を決定する必要がある. そこで, 低圧 圧縮機と高圧圧縮機における圧縮比の割合を変更し,中 間冷却を行う位置の変化が各評価基準に与える影響を 調査した. 圧縮機全体の圧縮比を 15 で固定し, 低圧圧 縮機と高圧圧縮機の圧縮比の積が全体圧縮比と同値に なるように設定した.図 13 に圧縮比の変化が評価基準 に与える影響を示す.フィンサイズは、フィン全長 L=0.035 [m], フィン高さ h=0.1 [m]とした. 図の横軸には 低圧圧縮比を使用しており、全圧縮比π=15から横軸の 値を除した値が,その横軸の低圧圧縮比に対応した高圧 圧縮比となる.

表 4	- 主流の諸元	
飛行高度 H	17500	[m]
比熱比 γ	1.4	[-]
大気温度 T _{inf}	216.65	[K]
大気圧 Pinf	8120	[Pa]
音速 a	295.07	[m/s]
密度 ρ	0.13057	[kg/m ³]
動粘度係数 v	108.55×10^{-6}	[m ² /s]
定圧比熱 Cp	1004.52	[J/(kg•K)]
粘度 <i>μ</i>	1.4173×10^{-5}	[Pa·s]
飛行マッハ数 M	2.6	[-]
対気速度 u	767.18	[m/s]
$C_H\sqrt{R}e_x$	0.4	[-]

表5 エンジ	ンの諸元	
インテーク全圧回復率 π	1	[-]
圧縮機効率 η_c	1	[-]
全圧縮比 πα	15	[-]
中間冷却器温度低下量 AT	100	[K]
タービン効率 η_t	1.0	[-]
空気質量流量 m	1.0	[kg/s]
燃料発熱量 Hk	43.5	[kJ/kg]
フィン半頂角 $ heta$	7	[°]
フィン密度 (銅)ρ _f	8680	[kg/m ³]
 フィン抗力係数 Cp	3.13×10 ⁻³	[-]

表 6	中間冷却器を維	日み込まない	場合	$(\pi_c = 15)$
	推力 F _{w/o}	460.2	[N]	
	比推力 Isp	3578.1	[s]	

図 13(a)より、低圧圧縮比が減少することで推力およ び比推力が増加することを確認した. すなわち、低圧圧 縮機での圧縮の割合を小さくして圧縮の早い段階で冷 却を行い,冷却後の圧縮の割合を大きくすることで,推 力および比推力を増加させることが可能となる.この考 えを突き詰めると理想的な低圧圧縮比は1となり、これ は流入した空気を圧縮前に冷却するプリクーラ付きタ ーボジェットである.しかし,図 13(b)からわかるよう に、低圧圧縮比を*πι*=1 として中間冷却器をプリクーラ として作動させると、気流と熱交換器フィンとの間に温 度差がないため、フィンでの熱流束が小さくなる. それ に伴い、必要となるフィンの枚数が増加する.また、こ れは必要となる伝熱面積が増加することと同義であり, 図 13(c) からわかるように、中間冷却器における質量と 抗力の増加につながる.結果として、中間冷却器におけ る質量と抗力が推力の増加量を大きく上回り,損失が生 じる.

一方,低圧圧縮比を増加させることで,推力および比 推力の増加量は減少するが,圧縮によって温度の上昇し た熱交換器フィンと超音速流との間の温度差が大きく なるため,フィンでの熱流束が上昇する.それに伴い, 必要となるフィンの枚数が減少する.また,中間冷却器 における質量と抗力は小さくなる.

これより,外気の超音速を中間冷却器の冷媒として用いる場合には,推力の増加量と中間冷却器における質量 と抗力の増加量とのバランスをとった圧縮比を設定す る必要がある.

4.3.3 フィンサイズの変更による効果

中間冷却器の熱交換器フィンのサイズの変化が各評価基準に与える影響を調査した.まず,フィン全長の変化が各評価基準に与える影響について考える.図14にフィン全長の変化が各評価基準に与える影響を示す.こ

こで、低圧側と高圧側の圧縮比は*πι*=*π*2=√15 を用いて 計算を行った.フィン全長が変化しても、サイクルの計 算結果に影響を与える全圧縮比や低圧と高圧の圧縮比 割合、中間冷却器における冷却量が一定であるため、推 力と比推力の増加量は一定である.一方で、図 14(a)に示 すように、フィン全長が減少することで熱流束が増加す ることを確認した.フィン全長の減少による熱流束の増 加によって必要となる伝熱面積が減少するため、図 14(b) で確認できるような中間冷却器における質量と抗力の 減少が可能となる.フィン全長の減少は、推力が一定値 を保ったまま中間冷却器における質量と抗力が減少す るため、飛行に有利にはたらく.

次にフィンの高さを変化させた場合の各評価基準の 影響について考える.図 15 にフィン高さの変化が熱流 束 q とフィン枚数 N に与える影響を示す.ここで,低圧 側と高圧側の圧縮比はπ_l=π₂=√15を用いて計算を行っ ている. 上記のフィン全長を変化させた場合と同様に, フィン高さが変化してもサイクルの計算結果に影響を 与える全圧縮比や低圧と高圧の圧縮比割合,中間冷却器 における冷却量が一定であるため,推力と比推力の増加 量は一定である. また, 図 15 から確認できるように, フィン高さの変化はフィンでの熱流束にも影響を与え ない.これより、フィン高さの変化が必要となる伝熱面 積に影響を与えないため,中間冷却器における質量と抗 力も変化しない.しかし,図15から確認できるように、 フィン高さを増加させることでフィン枚数を減少させ ることが可能である.これは、フィン枚数の減少分だけ フィンを高さ方向に積み上げることと同義である.

4.3.4 推力増加の改善

冷媒に超音速流を用い、本研究で設計した六角形の フィン形状の熱交換器を持つ中間冷却器を組み込んだ ターボジェットエンジンでは、中間冷却器を組み込ま ない場合と比較して、推力の増加を確認した.しか し、中間冷却器を組み込むことで、中間冷却器におけ る質量と抗力の増大も確認された.結果として、本試 算においては、どの条件においても推力の増加分を打 ち消すだけの中間冷却器における質量と抗力による損 失が生じた.

しかし、中間冷却器における質量と抗力を減少させることで、飛行を有利に進めることが可能であると考えられる.推力が増加すると、それに揚抗比をかけた分だけの揚力を増加させることが可能になる.したがって、推力の増加は、重量の増加によるマイナスの効果よりもより大きなプラスの効果をもたらすと言える.

中間冷却器での抗力を減少させる方法としては,更 なる抗力の低減を可能とするフィン形状を設計するこ とが挙げられる.また,質量と抗力の減少には,プレ ートフィン等を本研究の熱交換器フィンに組み込むこ とで熱流束を増加させる方法が挙げられる.熱流束の 増加が可能になると,必要となる伝熱面積が減少す る.それに伴い,中間冷却器における質量と抗力の低 減が可能になると考えられる.

5. 結言

本研究では,超音速機用ターボジェットエンジンに外 気の超音速流を冷媒とする中間冷却器を組み込むこと を提案した.エンジン外部に設置された熱交換器フィン での圧力抗力の上昇を最小限に抑えるために,ブーゼマ ンの複葉翼理論を応用しフィン形状を決定した.フィン

図 15 フィン高さが熱流束とフィン枚数に与える影響

は M=2.0 で始動するようにひし形の角を削った六角形 の形状とした.フィンの空力特性および伝熱特性を実験 により調査した.また,超音速機のターボジェットエン ジンに中間冷却器を組み込んだ場合の試算を行った.本 研究により得られた結論を以下に示す.

- (1) 本研究で設計したフィンは、超音速流中においてレイノルズ数が上昇することによって熱流束が上昇する。
- (2) ブーゼマンの複葉翼理論が成立した時のフィン周 りのマッハ数を使用してフィンの熱流束を平板の 理論より計算すると、約 20%の誤差での実験値の予 測が可能となる.
- (3) フィン全長を減少させることで、フィンでの熱流束 を増加させることが可能となる.

(4) 熱流束の増加による必要となる伝熱面積の減少に よって、中間冷却器でのフィン枚数および質量、抗 力の低減が可能となる.

謝辞

本研究を実施するにあたり,宇宙科学研究所高速気流 総合実験設備を使用させていただいた.ここに記して謝 意を示す.

参考文献

- 宇宙航空研究開発機構、「JAXA 長期ビジョン-JAXA 2025-」、2005.3.31
- [2] 吉田 憲司,「次世代超音速旅客機の空力技術に関する研究動向」,航空宇宙数値シミュレーション技術シンポジウム 2012 論文集, pp.79-88
- [3] 堀之内 茂,「低ブーム SSBJの概念設計について」, 宇宙航空研究開発機構研究開発報告, JAXA-RR-05-045
- [4] 水野 洋,「超音速旅客機 (SST=Supersonic Transport)」, RRR2008.2, pp.18-21
- [5] 夏目 武,「-事故事例-コンコルド墜落事故」, REAJ 誌 2001, Vol.23, No.6(通巻 114 号), pp.572
- [6] H. Taguchi et al., "Research on hypersonic aircraft using pre-cooled turbojet engines", Acta Astronautica, 73(2012), pp.164-172
- [7] 小林 弘明 他,「飛行実験用極超音速ターボジェ ットエンジン制御装置の開発」,宇宙航空研究開発 機構研究開発報告, JAXA-RR-08-012
- [8] 玉田 珖, (1960), 「気体力学(特)」, 吉岡書店, pp.129-132
- [9] 大和 一貴 他、「ブーゼマンの複葉翼理論を応用 した熱交換器フィンの基礎研究」、平成 27 年度宇 宙輸送シンポジウム:講演集録、2016.1
- [10] John D. Anderson, Jr., "HYPERSONIC AND HIGH TEMPERATURE GAS DYNAMICS", McGraw-Hill, Inc., pp.213-259