永久磁石によるカスプ磁場搭載定常作動型 電磁加速プラズマスラスタの性能特性

Performance Characteristic of Steady-State Magneto-Plasma-Dynamic Thrusters with Cusp Field using Permanent Magnets

○斉藤 将太・知野 健吾・杉山 義和・田原 弘一・高田 恭子 (大阪工業大学)

○Shota Saito • Kengo Chino • Yoshikazu Sugiyama • Hirokazu Tahara • Kyoko Takada (Osaka Institute of Technology)

Abstract (概要)

Magneto-Plasma-Dynamic (MPD) thrusters have been investigated at Osaka Institute of Technology. The purpose of this study is development of a practical MPD thruster system for manned Mars exploration mission as one of the In space Propulsion project in collaboration with the Japan Aerospace eXploration Agency (JAXA). A conventional MPD thruster is heavy and complicated because it needs to have solenoidal coils, a cooling water circulation system and a cooling water anti-freezing system. Therefore, it is difficult to use a conventional MPD thruster for practical missions. By using permanent magnets like a samarium cobalt magnet, a magnetic field is applied to an MPD thruster. In this research, shapes of a magnetic field were changed to Cusp field and an electrode was changed to straight-divergent nozzle. Then, the performance characteristics were obtained and compare with a previous research. Using Cusp field, higher performance, a thrust of 452.5 mN, a specific impulse of 307.6 s and a thrust efficiency of 4.97% at 8.10 kW were obtained.

1. 緒 言

近年、宇宙開発の中で注目されているのは、有人火星探 査およびテラフォーミング計画である.その計画の中には, 高推進効率・高比推力を特徴とする電気推進機の開発が含 まれる¹⁾. 上記のミッションを達成するために,より良い 性能を持つ電気推進機の開発が急がれる.本学では、宇宙 航空研究開発機構(JAXA)との共同研究として、大電力定常 作動型電磁加速プラズマスラスタ (Magneto-Plasma-Dynamic thruster, 以降 MPD スラスタと 表記する)を研究開発している. 従来の MPD スラスタは外 部磁場を与えるために水冷コイルが用いられていたが、シ ステムを簡素化するため、永久磁石により外部磁場を印加 した.本研究では、先行研究で用いていたアノードノズル 形状であるコンバージェント-ダイバージェントから,スト レート-ダイバージェントに変更した. それにより, 推進剤 の速度損失を抑え,推進効率の向上を狙った.また,従来 のスラスタに印加していた発散磁場ではなくカスプ磁場を 用いることで、放電電圧の減少が見込まれ、推進効率を改 善することができると予想し,カスプ磁場搭載水冷式 MPD スラスタの開発と性能特性を取得した.本研究の目的は, 推力 0.5-2.0 N, 比推力 1,000-3,000 s, 推進効率 40% 以上と した.

2. MPD スラスタ

2.1 水冷式 MPD スラスタ

本学で研究開発した発散磁場搭載水冷式 MPD スラスタ と、カスプ磁場搭載水冷式 MPD スラスタの 3Dモデル図を、 それぞれ図 1、図 2 に示す.一般的な MPD スラスタは、水 冷コイルを用いてスラスタに磁場を印加している.しかし、 宇宙空間で水冷コイルを用いるには、冷却水を循環させる システムや冷却水の凍結防止システムなどが必要となり、 スラスタシステムの複雑化は避けられない.よって本学の 研究では、永久磁石を用いて磁場を印加している.永久磁 石にはサマリウムコバルト磁石(SmCo)を用い、磁石ホルダ に搭載し、SS400 製のヨークによって挟み込んでいる.ま た、永久磁石はそれぞれ独立しているため、永久磁石の数 により印加する磁束密度を変更することを可能としている 2.

カスプ磁場搭載水冷式 MPD スラスタでは,発散磁場搭 載水冷式 MPD スラスタの磁石ホルダに加えて,下流側に もう一つ磁石ホルダを搭載している.それにより,永久磁 石の同極を突き合わせて固定することができる³⁾.また, 磁石ホルダはスラスタから独立した構造としている.

図1 発散磁場搭載水冷式 MPD スラスタ

図2 カスプ磁場搭載水冷式 MPD スラスタ

2.2 電極形状

水冷式 MPD スラスタの電極形状の概略図を図3に示す. 発散磁場搭載水冷式 MPD スラスタのノズル形状にはコン バージェント-ダイバージェント(以下, CD / ズルと明記す る)を用いた. アノードの寸法は、コンバージェントノズル 角度 120 deg., ダイバージェントノズル角度 50 deg., コン ストリクタ直径は2mmと10mm, コンストリクタ長さは 2 mm, 5 mm である. 次に, カスプ磁場搭載水冷式 MPD スラスタの電極形状概略図を図4に示す.前述した通り, カスプ磁場搭載水冷式 MPD スラスタは、既存の水冷式 MPD スラスタの下流側にもう一つの磁石ホルダを搭載し たものである. 先行研究で使用されていたアノードでは, ノズル出口から噴射されたプリュームが磁石ホルダに接触 することで加熱してしまい,磁束密度の低下および永久磁 石の不可逆減磁を引き起こす可能性がある. そのため、ア ノードの形状変更を行った. アノードのダイバージェント ノズル角度を 40 deg., 50 deg.の 2 段階とし、 プリュームが 磁石ホルダに当たらないようにした. その他の形状は, 発 散磁場搭載水冷式 MPD スラスタから変更は行っていない.

カソードにはロッドカソードを用いた.本実験で用いた ロッドカソードを図5に示す.ロッドカソードの材質は, 電気伝導性が高く,融点の高い純タングステンである.ロ ッドカソードの寸法は,直径10mm,先端角45 deg.の棒状 電極である.

図3 発散磁場搭載水冷式 MPD スラスタの電極形状

図4 カスプ磁場搭載水冷式 MPD スラスタの電極形状

図5 ロッドカソード

2.3 磁場形状

磁場解析ソフトフェア TriComp (Field Precision LLC)を 用いて,水冷式 MPD スラスタの磁場形状を取得した.発 散磁場搭載水冷式 MPD スラスタの放電室周りの磁場形状 を図6に示す.また,ガウスメーターによって測定された スラスタ中心軸上における磁束密度の大きさを図7に示す. 図6より,コンストリクタ付近において中心軸に対して平 行な磁場が形成されていることが分かる.また,ノズル下 流部では磁気ノズルを形成するように末広がりの磁場が形 成されており,より良い推進性能が期待できる.図7より, 最大磁束密度は磁石が14個のとき0.157 T,8個のとき0.093

T,0個のとき0Tであることが分かった.

続いて、図8にカスプ磁場搭載水冷式 MPD スラスタの 放電室周りの磁場形状を示す.図8より、永久磁石に挟ま れたSS400製の中央ヨークの位置にカスプが形成されてい ることがわかる.よって、カスプ位置の変更による性能取 得が可能であると考えられる.

図 6 発散磁場搭載水冷式 MPD スラスタの磁場形状

図7 発散磁場搭載水冷式 MPD スラスタの磁束密度

図8 カスプ磁場搭載水冷式 MPD スラスタの磁場形状

2.4 実験装置

本実験で用いた真空チャンバの概略図を図9に示す.こ の真空チャンバは、直径1.2m、長さ2.0mの円筒形で、材 質はステンレススチールである.排気速度600m³/hのロー タリーポンプと排気速度6,000m³/hのメカニカルブースタ ーを併用して排気を行う.チャンバ内圧力はピラニ真空計 を用いて測定し、5Pa程度に到達した.本学のMPDスラ スタには推力測定装置と較正システムが取り付けられてい る.推力測定装置には振り子式を採用した.

3. 発散磁場搭載水冷式 MPD スラスタによる実験

ロッドカソードを用いて,外部印加磁場の変更による実 験から基礎性能を取得した.また,ノズル径と推進剤流量, 外部磁場の強さを変更することでの性能特性を得た^{4,5)}.

3.1 ノズル径が推進性能に及ぼす影響3.1.1 実験条件

実験条件を表1に示す. アノードのコンストリクタ径は 2 mm と 10 mm をとし,推進性能の取得および検討を行った. 推進剤は NH₃を用いた.

衣1 天映禾件	
Propellant	NH ₃
Constrictor Diameter, mm	2, 10
Mass Flow Rate, mg/s	5, 60, 150
Magnetic Flux Density, T	0.157
Discharge Current, A	70-150

表1 実験条件

3.1.2 実験結果

NH₃が5mg/sと60mg/sの時の推力-放電電流特性を図10 に示す.推力は放電電流の緩やかな増加関数となった.ア ノードのコンストリクタ径について比較すると、小流量の 場合を除いて2mmの方が推力は大きくなった.これは、 コンストリクタ径が大きいと電磁加速主体となるため、よ り電離がされやすい小流量の方が推力は大きくなり、コン ストリクタ径が小さいと電熱加速が主体となるため、大流 量の方が推力は大きくなったと考えられる.

また,NH₃が60 mg/s,投入電力6.75 kWの条件で,推力477.4 mN,比推力811.4 s,推進効率19.0%を得た.

3.2 外部印加磁場が推進性能に及ぼす影響

3.2.1 実験条件

実験条件を表2に示す.外部印加磁場の大きさ0T,0.093 T,0.157 Tの3種類とし、3つのパラメータの変更による 性能特性を調査した.

表 2 実験条件	
Propellant	NH ₃
Mass Flow Rate, mg/s	10, 150
Constrictor Diameter, mm	2, 10
Magnetic Flux Density, T	0, 0.093, 0.157
Discharge Current, A	70-150

3.1.2 実験結果

図11に推力-放電電流特性を示す.図11から,小流量か つアノードのコンストリクタ径が10mmの条件で,外部印 加磁場が0.093Tのときに推力が最大となっている.一方, 大流量かつコンストリクタ径が10mmの条件では,外部印 加磁場の影響はあまり受けず,ほぼ同じ推力値となった. これらの傾向は,前述したノズル径変更実験で得られた実 験結果の傾向と同じだと考えられる.

(a) NH₃10 mg/s

図 11 推力-放電電流特性

3.3 ノズル形状が推進性能に及ぼす影響

3.3.1 実験目的·実験条件

本学で開発された MPD スラスタのアノードノズルには コンバージェントノズルを採用していた.しかし, MPD スラスタは外部印加磁場によって形成される磁気ノズルに よって,推進剤がすでに音速域に達していると推測される ため,コンバージェントノズルを設ける必要がない.そこ で,コンバージェントノズルによるプラズマの減速を防ぐ ために,ストレート-ダイバージェント(以降, SD と明記す る)を採用し,コンバージェントノズルによって発生する速 度損失をなくす.それにより,推力向上ができると予想し た.

実験条件を表3に示す.推進剤にはNH₃を用い,推進剤の流量は、10 mg/s、60 mg/s、150 mg/sの3種類とした.また、スラスタに印加した磁束密度は0.157 Tとし、電極間距離は0 mmとした.本実験で用いたSD /ズルアノードの概略図を図12に示す.

Propellant	NH ₃
Mass Flow Rate, mg/s	10, 60, 150
Constrictor Diameter, mm	20
Magnetic Flux Density, T	0.157
Discharge Current, A	70-150

3.3.2 実験結果

図 13 に推進剤流量 10 mg/s のときの, CD と SD それぞ れの噴射の様子を示す. 10 mg/s の条件では, プリュームが 収束していることが確認できる.また,他の条件において も同様の傾向が見られた.これは,アノードのコンストリ クタ径を 20 mm としており,放電室内圧力が高く保たれな かったためだと考えられる.

図 14 に放電電圧-放電電流特性を示す.全ての条件下に おいて垂下特性を確認することができたが、SD ノズルに 比べ、CD ノズルを用いたときの方が電圧降下が著しくな った.また、推進剤流量が大きいほど放電電圧の値が高く なった. 次に,図15に推力-放電電流特性を示す.図15より,SD ノズルを用いたことで,推力の向上が確認できた.これは 前述した通り,推進剤の速度損失が小さくなり,ノズルよ り排出されるプラズマの速度が大きくなったことで,推力 が向上したと考えられる.

最後に、図 16 に推進効率-比推力特性を示す. SD ノズル を用いると推力値は高くなったが、電圧低下の傾きは CD ノズルを用いた方が顕著であった. そのため、推進効率に ついて見ても、2 つのノズルで比較しても大きな違いは見 られなかった. しかし、SD ノズルを用いたとき、推力が 改善されたことから比推力の向上を確認することができた.

本実験では、コンストリクタ径が 20 mm のアノードを用 いた. それにより、放電室内圧力が高く保たれず、放電電 圧が高くなってしまった.今後、放電室内圧力を高く保ち、 かつ電熱加速モードを用いた推進効率の改善を目指すため に、SD アノードのコンストリクタ径を小さくし作動特性 を取得する必要がある.

(a) CD 10 mg/s

(b) SD 10 mg/s図 13 噴射の様子

図 16 推進効率-比推力特性

4. カスプ磁場搭載水冷式 MPD スラスタによる実験

4.1 作動実験及び基礎性能取得

4.1.1 実験目的 実験条件

外部印加磁場に従来の発散磁場ではなく,新たにカスプ 磁場を用いたカスプ磁場搭載水冷式 MPD スラスタの開発, 作動実験,及び性能取得を行った. また,発散磁場搭載水 冷式 MPD スラスタとの性能比較を行った.

表4にカスプ磁場搭載水冷式 MPD スラスタを用いた噴 射実験の実験条件を示す.発散磁場搭載水冷式 MPD スラ スタとの性能比較を行うため,実験条件の変更は行わなか った.また,前述したように磁気回路を軸方向に移動する ことでカスプ位置を自由に変更できる構造としている.カ スプ位置はコンストリクタ上とし,その位置を基準位置で ある0mmと定義した.0mmを基準にスラスタ下流方向を 正の値,スラスタ上流方向を負の値として,-5,0,+5mm の3箇所において実験を行い性能特性の取得を行った^の. カスプ位置の概略図を図17に示す.

表4 実験条件

Propellant	NH ₃
Mass Flow Rate, mg/s	10, 60, 150
Discharge Current, A	70-150
Cusp Position, mm	-5, 0, 5

(b) -5 mm 図 17 カスプ位置の概略図

4.1.2 実験結果

カスプ位置 0 mm においての噴射の様子を図 18 に示す. 全ての条件下において安定作動を確認した.図より,推進 剤流量を小さくするにつれてプリュームが収束しており, 逆に大きくするにつれてプリュームが長く伸びている.こ れは,発散磁場搭載水冷式 MPD スラスタでの作動でも見 られた傾向である.

続いて,推進剤流量 60 mg/s においての発散磁場搭載水 冷式 MPD スラスタとカスプ磁場搭載水冷式 MPD スラスタ の放電電圧-放電電流特性を図 19 に,推力-放電電流特性を 図 20 に,推進効率-比推力特性を図 21 に示す.図 19 より, どの条件下においても垂下特性が見られた.また,カスプ 磁場を印加することで,放電電圧の減少が確認できた. 次に図 20より,カスプ磁場搭載水冷式 MPD スラスタに 比べて,発散磁場搭載水冷式 MPD スラスタの方が推力値 が大きい結果となった.これは,印加したカスプ磁場によ る噴射と逆方向に働くローレンツ力が加速の障害になった からだと考えられる.

最後に、図21より、カスプ磁場を用いることで放電電圧 の低下は見られたが、推力値が小さくなった.それにより、 発散磁場搭載水冷式 MPD スラスタの方が推進効率が高い 結果となった. さらにカスプ位置を変更することで、推力 値が小さくなりにくい条件を見つける必要がある.

(a) 10 mg/s

(b) 60 mg/s

(c) 150 mg/s 図 18 噴射の様子(カスプ位置 0 mm)

7

5. 結 言

本研究では,発散磁場搭載水冷式 MPD スラスタの推進 性能取得を行った.また,推進効率改善のために,カスプ 磁場搭載水冷式 MPD スラスタを開発し,作動実験及び基 礎性能取得を行った.

- 発散磁場を印加し、コンストリクタ径を2mmと10mm にした際の基礎性能を取得した。コンストリクタ径10 mmかつ小流量域のとき、外部印加磁場による電磁加速 が優位になった。また、中流量・大流量のときはコンス トリクタ径に関わらず、電熱加速が優位になる傾向を確 認した.コンストリクタ径2mmのとき、NH₃が60mg/s、 投入電力6.75kWの条件で、推力477.4mN、比推力811.4 s、推進効率19.0%を得た。
- 2)発散磁場搭載水冷式 MPD スラスタにおいて、アノードのノズル形状を変更し、性能特性を取得した. CD ノズルから SD ノズルに変更することで、ノズル収束部における減速を抑え、推力向上が見られた.本実験では推進効率の向上は達成することができなかったが、比推力の向上による推進性能の改善を実現した.
- 3)発散磁場からカスプ磁場に変更することで、放電電圧の 値が減少する傾向が得られた.しかし、カスプ磁場によ るローレンツ力が噴射とは逆向きの方向に働いてしまう ために、推力値の低下、推進効率の低下を招いた.これ により、今後カスプ位置を変更し、推力が向上する条件 を調査する必要がある.

6. 今後の展望

1)SD ノズルを用いたとき、放電室内圧力を高く保つことで、放電電圧の減少から推進効率の向上に繋がると考えられる.よって、コンストリクタ径 20 mm よりも小さいSD ノズルを用いて実験を行い、性能特性を取得する.

2)カスプ磁場を用いたとき、従来の発散磁場と比べて放電 電圧の減少は見られたが、同時に推力値の低下も見られ たため推進効率の低下を引き起こした.そのため、カス プ位置を変更することで、放電電圧の減少に加え、推力 値を改善することのできる条件を探る.

7. 参考文献

- 栗木恭一,荒川義博,「電気推進ロケット入門」,東 京大学出版会,2003 年
- Suzuki, T., Kubota, T., Koyama, N. and Tahara, H. "Research and Development of Steady-State MPD Thrusters with Permanent Magnets and Multi Hollow Cathodes for In-Space Propulsion", AIAA Propulsion and Energy 2014, AIAA-2014-3697, Cleveland, USA, 2014.
- Yoshikazu Sugiyama, Kengo Chino, Shota Saito, Hirokazu Tahara and Kyoko Takada「Research and Development of High-Power Steady-State MPD Thrusters with Permanent Magnets and Hollow Cathodes for In-Space Propulsion」 Space Propulsion 2016, Paper No. 3124902, 2016年5月, マリオット ローマ パーク ホテル(ローマ・イタリ ア)
- 4) 斉藤将太,知野健吾,杉山義和,田原弘一,高田恭子 「永久磁石を用いた有人火星探査用大電力定常作動 型電磁加速プラズマロケットエンジンの開発研究」 電気学会 プラズマ研究会, PST-16-051, 2016 年 8 月, 大阪市立大学(大阪府大阪市).
- 5) 知野健吾, 杉山義和, 斉藤将太, 田原弘一, 高田恭子 「永久磁石によるカスプ磁場をもつ定常作動型 MPD スラスタの性能特性」 第60回宇宙科学技術連合講 演会, 4I01,2016 年9月, 函館アリーナ(北海道函館市)
- 6) 斉藤将太,知野健吾,杉山義和,田原弘一,高田恭子 「永久磁石によるカスプ磁場を用いた大電力定常作動 型電磁加速プラズマスラスタの性能特性」第53回日 本航空宇宙学会 中部・関西支部合同秋期大会,A4, 2016年11月,名城大学 ナゴヤドーム前キャンパス (愛知県名古屋市).