アノードレイヤ型ホールスラスタの推進性能に対する陽極形状依存性

Anode Configuration Effect on Thrust Performance in an Anode Layer Type Hall Thruster

○江川 雄亮(九大・院)・山本 直嗣(九大)・高瀬紘平(九大・院)

○Yusuke Egawa • Naoji Yamamoto • Kohei Takase (Kyushu University)

Abstract

The anode configuration effects on thrust performance, thrust and oscillation characteristics, in a 5 kW class anode layer Hall thruster (RAIJIN94) have been investigated. The thrust is measured by means of a thrust stand developed at Kyushu University and oscillation amplitude is measured by means of a current probe. The thrust with normal anode and boss anode are 111 mN and 103 mN, respectively at discharge voltage of 400 V and anode mass flow rate of 4.9 mg/s and cathode mass flow rate of 0.5 mg/s. the small oscillation operational range with normal anode is larger than that with the boss anode. The difference between two anode configurations would be due to the plasma generation region.

記号の説明

- F: 推力
- g: 重力加速度
- I_d 放電電流
- *Isp* 比推力
- *ṁ* 推進剤質量流量
- V_d 放電電圧
- η_t 推進効率
- τ 測定時間

1. 序論

NASA の 457M¹⁾やロシア D-160²⁾ 等に見られるように, 火星有人探査時や SSPS 建設用カーゴの主推進機として, 数十 kW 級の大型のホールスラスタの開発が進められてい る.ホールスラスタはソビエトが中心となって開発が進め られてきた電気推進機のひとつであり,その特徴として, イオン加速領域に電子が存在するため,空間電荷制限則を うけず,このため推力密度が高くコンパクトという特徴が ある.³⁻⁵⁾ また長寿命化が期待でき,比推力 1500-2000 秒で 効率が 50%以上とよいという点も利点である.そのためホ ールスラスタは人工衛星の軌道変更や、人工衛星や宇宙大 型建造物の南北制御などの地球近傍ミッションに適してお り、現在最も注目を浴びている電気推進機である。宇宙機 への搭載例として,月探査の SMART-1⁶の主推進や静止衛 星の南北制御⁷⁾ などが挙げられる.

ホールスラスタには大きく分けてアノードレイヤ型とマ

グネチックレイヤ型がある.⁵⁾現在の主流はマグネチック レイヤ型であるが、コンパクトさ、推進効率、寿命等の潜 在能力の高さから、日本独自の In space propulsion としては アノードレイヤ型ホールスラスタが最右翼になると考えて いる. Robust Anode-layer Intelligent thruster for Japan IN-space propulsion(RAIJIN)プロジェクトとして、日本のホ ールスラスタ研究開発グループが一体となって 2011 年度 から開発がスタートした.⁸⁾開発において安定化に大きき 寄与するホローアノードの最適化が必要不可欠であるが、 ホローアノード内部の物理に関して未解明の部分もあり、 ホローアノードの設計指針を構築中であるのが現状である. そこで本研究は、アノードレイヤ型ホールスラスタ性能へ 及ぼす影響を調査した.

2. 実験装置

2.1 ホールスラスタ

本実験に使用したホールスラスタは 5kW 級アノードレイヤ型ホールスラスタである. 図2, 図3に使用したホール スラスタの概観を示す.加速チャネルの外径は 94 mm,外 径は 60 mm であり, チャネルはカーボンで出来ている. ス ラスタ中心部に1つ,外側に4つ,計5つのソレノイドコイ ルとチャネル外周にトリムコイルが設置されている. これ らにより加速チャネル内に磁場を印加する. 内側と外側の コイルに流す電流の大きさと比,トリムコイルの電流値を 変えることで磁束密度及び磁場形状を変更することが可能 である(図 4 参照). アノードは中空の環状リングの形状を したホローアノードを採用している. アノードはスラスタ 軸方向の出口間距離を変更でき,またアノードの流路幅も 変更することが可能である. 推力測定では,図 5 に示すよ うな,返しのない厚さ1 mmのアノードと先端に返しの付 いた厚さ2 mmのアノードの二種類について,それぞれ実 験を行った.返しのないアノードでは比較的チャネル内部 深くまでプラズマ生成領域を形成し,安定作動かつ高効率 のイオン生成を見込む一方,返しの付いたアノードはプラ ズマ生成領域を内外のアノードの中央に絞ることにより, イオンの壁面衝突を抑制し,長寿命化を図っている.⁹

電子源にはホローカソード (VEECO 社製, HCES) を使 用した.作動ガスにはキセノンを使用した.大気解放中で はアルゴンを流し続けることによりインサータの大気暴露 を避けた.カソード着火時はキーパーに 1500 V,ガス流量 を 5 mg/s 流して着火させ,カソード作動中のガス流量は 0.49 mg/s,キーパー電流は 1.5 A 一定とした.

図2 アノードレイヤ型ホールスラスタの外観

図3 アノードレイヤ型ホールスラスタ作動時

図 4 磁束密度分布(Magnum 3.0 による数値解析,内側コイル 0.7 A、外側コイル 0.7 A、トリムコイル 0 A)

2.2 スラストスタンド

推力測定は振り子式スラストスタンドを用いて行った. 図 6 にスラストスタンドの概形を示す.外枠はアルミニウム製,内側の振り子はカーボン製の 8 本の骨組みと 12 個のナイフェッジで構成され,,箱ブランコのような構造をしている.ホールスラスタはスラストスタンドの上部に設置し,下部には5 kgのカウンターウェイトを設置し,LEDマイクロ変位センサ(OMRON 社製,Z4W-V25R)により変位を検出し,推力を評価した.推力校正は,真空環境下においてロードセルとトラバースを組み合わせた機構を用いて,水平方向荷重をスラストスタンドに加え変位を測定,水平方向荷重を次位の関係式を算出し行った.このスラストスタンドの測定誤差は 2.6% であった.

図6 スラストスタンド

2.3 真空設備

スラスタの作動実験は独立行政法人 JAXA (宇宙航空研 究開発機構)/宇宙科学研究所の大型スペースサイエンスチ ェンバーにて行った. 図 7 にスペースサイエンスチェンバ ーの外観を示す.上記のチェンバーは円筒形のステンレス 製の真空槽で,チェンバーの直径は 2.5m,長さは 2.5m で, 排気にはメカニカルブースターポンプ 1 台とロータリーポ ンプ 2 台で粗引きを行った後,1 基のターボ分子ポンプ (TG3451MVAB:排気速度 3400 l/s at N₂)と 2 基のクライ オポンプ (CRYO-U30H:排気速度 28000 l/s at N₂)が接続 されており,チェンバー内を高真空まで排気し,維持した. 図 8 に排気系統概略図を示す.推進剤(キセノン)未流入 時の到達真空度は 1.30×10⁴ Pa で,スラスタ作動下での真

空度は 1.45×10⁻² Pa であった.

3. 結果 考察

3.1 推進性能

推進効率η,比推力 *I*_{sp}は1以下の式によって評価した. 放 電以外にも消費される電力,例えば磁気回路の励磁エネル ギーやホローカソードの加熱に消費されるエネルギーなど は無視した.

$$\eta_t = \frac{F^2}{2\dot{m}V_d I_d}$$
$$I_{sp} = \frac{F}{\dot{m}g}$$

図9に推進剤流量4.9 mg/sに固定した状態で放電電圧を 150 Vから400 Vまで変化させたときの推力を示す.推力 は放電電圧とともに上昇し,150 Vではどちらの陽極形状 においても54 mN(比推力1135 s)であったが,400 Vでは 返しありのアノードでは103 mN(比推力2150 s),薄型の アノードでは111 mN(比推力2330 s)が得られた.

図10に図9と同じ条件下での放電電圧と推進効率の関係 を示す.推進効率も推力と同様に薄型アノードのほうが効 率はよく、400Vでは返しありアノードで0.53,薄型アノー ドで0.60であった.

薄型アノードを使用した時は,ホローアノード内でプラ ズマが生成されやすく,返しありアノードを使用した時は, プラズマはホローアノードの中央付近,加速チャネルの内 側付近から外側でプラズマが生成されることを意図したた め、推進剤利用効率が下がったために¹⁰⁾、推力および推 進効率は下がったが,寿命とのトレードオフを考えると十 分な性能が得られているといえよう.

3.2 安定作動範囲

振動の大きさを表す指標として,以下の式で意義される 指標Δを用いた. τは測定時間で本研究では 50ms とした

$$\Delta = \frac{R.M.S}{\overline{I_d}} = \frac{1}{\overline{I_d}} \sqrt{\frac{\int_0^{\tau} (I_d - \overline{I_d})^2}{\tau}}$$
$$\left(\overline{I_d} = \frac{\int_0^{\tau} I_d}{\tau}\right)$$

図 11, 図 12 に内側コイルの電流値,と放電電圧に対す る振動の大きさの分布を示す.返しありアノードのときと 薄型アノードのときの分布を比較すると、薄型アノード を使用したときは返しアノードを使用したときより安定作 動範囲が広く見られた.これは薄型アノードではスラスタ 作動時,プラズマがより、ホローアノードの内側に生成さ れることで、プラズマが安定したためである.11)

図12 不安定領域(薄型アノード)

4. まとめ

本研究では 5kW 級のアノードレイヤ型ホールスラスタ を用い、2 種類の陽極を使い作動実験を行った. 陽極形状 変更前後で推力,推進効率ともに差が見られたが,400V で 7%程度にとどまった。また安定作動範囲も二つの陽極によ り特に高電圧作動条件で差が出たが,どちらもまったく安 定な動作点がないという作動条件はなかった。これより寿 命延長の効果を考慮すると返しあり陽極の選択もありえる ため、数値解析による詳細な再設計を行いたい.

謝辞

本研究は, JSPS 科研費 23686123, 26289324 の助成を受けたものです。

本研究は「宇宙航空研究開発機構 宇宙科学研究所 スペ ースプラズマ共同利用設備」を利用したものであり,また 本研究を行うに当たり,ご協力をいただきました,國中均教 授,細田聡史開発員,月崎竜童助教に感謝申し上げます.

参考文献

- J. A. Linnell, A.D. Gallimore, "Efficiency Analysis of a Hall thruster Operating with Krypton and Xenon," Journal of Propulsion and Power, Vol.22, pp. 1402-1418, 2006.
- S.Tverdokhlebov, A. Semenkin, and J. Polk, "Bismuth Propellant Option for Very High Power TAL Thruster," AIAA Paper 2002-0348,Jan. 2002.
- V. V. Zhurin, H. R. Kaufman, R. S. Robinson, "Physics of Closed Drift Thrusters,"Plasma Sources Sci. Technol. 8, 1999, R1-R20.
- Zharinov, A. V. and Popov, Yu. S., "Acceleration of Plasma by a Closed Hall Current," Soviet Physics-Technical Physics, Vol. 12, Aug. 1967, pp. 208-211.
- H. R. Kaufman, "Technology of Closed-Drift Thrusters," AIAA journal, Vol. 23, No. 1, 1985, pp.78-86.
- C. R. Koppel and D. Estublier, "The SMART-1 Electric Propulsion Subsystem,"AIAA-2003-4545, 39th Joint Propulsion Conference, Huntsville, Alabama, July 20–23, 2003.
- R. Myers, Overview of Major "U.S. Industrial Electric Propulsion Programs," AIAA-2004-3331, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, July 11-14, 2004
- N. Yamamoto, et al., "Thrust Performance in a 5 kW class anode layer type Hall thruster," IEPC paper 2015-459p, Kobe, July, 2015.
- 9) 山口敦,"九州大学大学院総合理工学府修士論 文,2016.
- 10) 高瀬 紘平, "5 kW 級アノードレイヤ型ホールス ラスタの特性評価,"九州大学大学院総合理工学 府修士論文,2016.
- (横田茂,安井伸輔,熊倉賢,小紫公也,荒川義博:アノ ードレイヤ型ホールスラスタ内部のシース構造と放 電電流の数値解析,日本航空宇宙学会誌, Vol.54, No. 632, Sep., 2006.