レーザー核融合ロケット用磁気スラストチャンバー内の プラズマの振る舞い

The Behavior of Plasma in a Magnetic Thrust Chamber For Laser Fusion Rocket

○ 枝本 雅史・齋藤 直哉・森田 太智・山本 直嗣(九大)・砂原 淳(レーザー総研)・
 川島 諒祐・三浦 智之・中島 秀紀(九大)・藤岡 慎介・余語 覚文・西村 博明(阪大レーザー研)・
 森 芳孝(光産業創成大学院大)・城崎 知至(広大)

 Masafumi Edamoto • Naoya Saito • Taichi Morita • Naoji Yamamoto(Kyushu University) • Atsushi Sunahara(Institute for Laser Technology) • Ryosuke Kawashima • Satoshi Miura • Hideki Nakashima(Kyushu University) • Shinsuke Fujioka • Akifumi Yogo • Hiroaki Nishimura(Institute of Laser Engineering, Osaka University) • Yoshitaka Mori(The Graduate School for the Creation of New Photonics Industries) • Tomoyuki Johzaki(Hiroshima University)

Abstract(概要)

In order to demonstrate a magnetic thrust chamber system for laser fusion rocket (LFR), understanding of the interaction between plasma and magnetic field in a magnetic thrust chamber is indispensable. We have conducted numerical analysis using radiation hydrodynamics code and hybrid code for describing the plasma behavior in a magnetic thrust chamber. For the validity of this code, we measured ion beam current of laser ablation plasma in a magnetic thrust chamber system with charge collectors at 150 mm downstream. The experimental result shows that ion beam trace has double peaks and numerical result also shows double peaks.

<i>t</i> :	時間
и:	速度
ρ:	密度
p_i, p_e :	イオン圧力,電子圧力
<i>q</i> :	人工粘性
T_i, T_e :	イオン温度,電子温度
c _{vi} , c _{ve} :	イオン比熱,電子比熱
<i>κ</i> _i , <i>κ</i> _e :	Spitzer の熱伝導係数(イオン,電子)
α:	Spitzer の熱緩和係数
<i>Qi</i> :	人工粘性に伴うエネルギー変換分
<i>Q</i> _e :	輻射吸収により電子が受け取るエネルギー
n _i , n _e :	イオン密度,電子密度
<i>m</i> _i , <i>m</i> _e :	イオン質量、電子質量
v _i , v _e :	イオン速度,電子速度
<i>Z</i> _e :	イオン価数
е:	電気素量
E :	電場
B :	磁場

記号の説明

1. 背景

現在,将来の有人宇宙探査に向けて,様々な推進機関が 提案されている.なかでもレーザー核融合ロケットは,大 推力と高比推力を同時に達成できることから,実現すれば 有人惑星間航行の際の推進機関として有力な候補になると 考えられている.これまでに,米国 LAWRENCE LIVERMORE 研究所の Orth らによって,レーザー核融合ロ ケットの概念設計が提案されている¹⁾.

本研究グループではこれまで,実験と数値解析の両面から,レーザー核融合ロケットの推進原理である磁気スラス トチャンバーの原理実証を行ってきた.これまでの研究で, 磁気スラストチャンバー内のプラズマの振る舞い²⁾および 磁気スラストチャンバーによる推力発生³⁾を実験的に観測 している.また,輻射流体コードとハイブリッドコードを 組み合わせた手法により,シミュレーションでの実験結果 の再現を試みてきた⁴⁾.しかし,磁気スラストチャンバー 内の詳細な物理現象の解明や,シミュレーションでの実験 結果の完全な再現には至っていない.本論文では,実験結 果とシミュレーション結果を比較し,その誤差の原因及び 改良手法について考察する.

2. 推進原理

磁気スラストチャンバーの原理を図1に示す.まず,図 1(a)のように,発散磁場中でプラズマが膨張する.プラズ マは膨張しながら図1(b)のように磁場を圧縮する.その後, プラズマとコイルはそれぞれ,反磁性電流とコイル磁場, 反磁性磁場とコイル電流によるローレンツ力で加速され, 推力を得る.レーザー核融合ロケットにおいては,発散磁 場中に置かれたターゲットにレーザーが照射され,核融合 プラズマが生成される.核融合反応を利用することにより 入射したエネルギーより大きなエネルギー(D-T ターゲッ ト利用で約1500倍のゲインを想定)を得ることができ,高 エネルギーのプラズマが生成される.これにより,大推力 と高比推力を同時に実現できる.また,最適な外部磁場の 大きさはプラズマのエネルギーに依存し,核融合プラズマ の運動エネルギーに対して5倍の磁場エネルギーが必要と なる¹⁾.

実運用時の代表的な想定パラメータとして、Orth らによって提案された VISTA での例を表 1 に示す.

図 1 磁気スラストチャンバーによる推進原理

Laser energy	5 MJ
Fusion output	7500 MJ
D-T fuel mass	44 mg
Propellant mass	50 g
Reaction frequency	30 Hz
Specific impulse	17000 s
Thrust	2.35 MN
Coil radius	13 m
Coil current	16.8 MA-turns
Maximum magnetic field strength	12 T

表 1 VISTA 実運用時の想定パラメータ¹⁾

3. 実験体系

大阪大学レーザーエネルギー学研究センターEUV デー タベースレーザー施設における実験のセットアップ図を 図2に示す.ターゲットである直径500 µm のポリスチレ ン球はターゲットチャンバ中央(TCC)に配置され、そこか ら11 mm 離れた場所にコイルが配置される.このコイル により、TCCにおいて約1.1 Tの磁場が生成される.レー ザーはコイル軸にそってコイル内側を通り、ターゲットに 照射され、プラズマを生成する.図のA~Fはチャージコレ クタであり、TCCから150 mm 離れた場所に配置され、そ れぞれの位置でのイオン電流を計測する.

レーザーには Nd:YAG レーザー(波長 1064 nm)を用いて

おり, TCC で直径約 500 µm となるように集光される.

図 2 実験セットアップ

4. シミュレーション手法

本研究で用いたシミュレーションは大きく 2 つのコー ドに分かれる.まず初めに輻射流体コード⁵⁾を用いて,レ ーザーと固体ターゲットの相互作用によるプラズマ生成過 程を計算する.輻射流体コードでは,CH ターゲットにつ いてCとHを平均した物理量を持つ粒子として取り扱う. この結果として生成されたプラズマを初期プラズマと定義 する.輻射流体コードで用いる基礎方程式を以下に示す. 式はそれぞれ,(1)連続の式,(2)運動方程式,(3)イオンエネ ルギー式,(4)電子エネルギー式である.

$$\frac{d\rho}{dt} = -\rho \nabla \cdot \boldsymbol{u} \tag{1}$$

$$\rho \frac{du}{dt} = -\nabla (p_i + p_e + q) \tag{2}$$

$$\rho c_{\nu i} \frac{dT_i}{dt} = -p_i \nabla \cdot u - \nabla \cdot (\kappa_i \nabla T_i) + \alpha (T_e - T_i) + Q_i$$
(3)

$$\rho c_{ve} \frac{dT_e}{dt} = -p_e \nabla \cdot u - \nabla \cdot (\kappa_e \nabla T_e) + \alpha (T_i - T_e) + Q_e \qquad (4)$$

その後、初期プラズマの膨張および磁場との相互作用に ついて、三次元(3D)ハイブリッドコード⁶⁾を用いて計算す る. 3D ハイブリッドコードでは、イオンを粒子、電子を流 体として扱い、プラズマと磁場の相互作用を計算している. 計算過程での近似として、電荷中性および電子温度 $T_e = 0$ 、 電子質量 $m_e = 0$ を仮定している。初期磁場については、別 のコードでソレノイドコイルに流れる電流から計算した磁 場の値を設定した。ハイブリッドコードの基礎方程式は、 マクスウェル方程式および、以下の運動方程式である。こ こで(5)イオンの運動方程式、(6)電子の運動方程式である。

$$n_i m_i \frac{d\boldsymbol{v}_i}{dt} = Z_e n_i (\boldsymbol{E} + \boldsymbol{v}_i \times \boldsymbol{B})$$
(5)

$$n_e m_e \frac{d\boldsymbol{v}_e}{dt} = -e n_e (\boldsymbol{E} + \boldsymbol{v}_e \times \boldsymbol{B}) - \nabla p_e$$
(6)

今回用いた輻射流体コードは二次元(2D)で計算を行うた め、2D 輻射流体コードから 3D ハイブリッドコードにデー タを渡す際には、2D から 3D へのデータ拡張が必要となる. そのため、レーザー軸に対して軸対称なプラズマであると 仮定して、3D への拡張を行った.計算条件を表2に、シミ ュレーションフローを図3に示す.

前述のとおり, 3D ハイブリッドコードでは電子温度が 0 であると仮定しているが,生成直後のレーザーアブレーシ ョンプラズマの電子温度は 100 eV 以上と高温である.そこ で,プラズマの熱エネルギーが十分に運動エネルギーに変 換されるまでを 2D 輻射流体コードで計算し,運動エネル ギーが支配的となった時点で 3D ハイブリッドコードにデ ータを渡した.表 2 に示した程度のパラメータを用いた場 合,レーザーパルスのピーク時刻(Tpeak)から 50 ns 程度で 運動エネルギーが十分支配的になることが先行研究からわ かっている.そのため,今回は Tpeak から 50 ns 経過後の データを 3D ハイブリッドコードの初期入力として与えた. また,3D ハイブリッドコードではイオンを超粒子として扱 っており,今回のシミュレーションパラメータでは超粒子 1 つあたりに約6×10¹²個のイオンが含まれる.

Laser	Beam type	Gaussian
	Number of beams	1
	Energy	7.5 J
	Pulse width (FWMH)	9.4 ns
	Spot diameter (FWHM)	500 µm
	Wave length	1064 nm
Coil	Inner diameter	13 mm
	Outer diameter	25 mm
	Length	10 mm
	Number of turns	96
	Magnetic field strength	1.1T approx. (at TCC)
Target	Shape	500µm sphere
	Material	Polystyrene
Number of super-particles		1,000,000
Time step		50 ps
Simulation window		r : 3 mm
(2D radiation hydro code)		z : 5 mm
Number of mesh		r, z : 100
(2D radiation hydro code)		
Simulation window		x, y, z : 150 mm
(3D hybrid code)		
Number of mesh		x, y, z : 50
(3D hybrid code)		
Coupling method		axial symmetry

表 2 シミュレーションパラメータ

図 3 シミュレーションフロー

5. 結果 考察

実験とシミュレーションにおけるチャージコレクタでの 観測波形を比較する.ここでは.チャージコレクタ C(下流 側,レーザー軸から 15°)のデータを用いた.図4は実験 でのチャージコレクタを用いたイオン電流計測結果,図5 はシミュレーションでのチャージコレクタ位置へ到達した 超粒子数をそれぞれ示す.実験結果では約1µsで最初のピ ークが現れているが、シミュレーションでは7µs程度から 立ち上がり始めている.この結果から、シミュレーション におけるプラズマ速度が実験に比べて非常に低速である事 がわかる.また、実験結果の波形にみられる特徴的なダブ ルピークも再現できていない.

図 4 イオン電流計測値

図 5 チャージコレクタ位置への超粒子到達数

この違いの原因を明らかにするため、2D 輻射流体コード の結果を検証した. Tpeak から 5 ns 後の速度分布を図 6(a) に、50 ns 後の速度分布を図 6(b)にそれぞれ示す. この結果 より、時間経過に伴いプラズマが計算領域を超えて膨張し ていることがわかる. すなわち、Tpeak から 50 ns 後のプラ ズマを 3D ハイブリッドコードの初期入力とした場合には 高速なプラズマを考慮できていない. 計算領域を十分に広 げるという対策も考えられるが、磁場の拘束を受けないま ま大きく膨張するプラズマとなるため、実験結果を再現す る上で問題になると考えられる.

図 6 プラズマ速度分布 (a)Tpeak から 5 ns 後 (b)Tpeak から 50 ns

そこで、高速な粒子が領域内に存在する Tpeak から 5 ns

後のプラズマをハイブリッドコードの初期入力として、シ ミュレーションを行った.この場合でのチャージコレクタ 位置への超粒子到達数を図7に示す.コードから出力され るデータは10 ns 毎で、グラフでは10点ごとに移動平均し たデータを用いている.また、Tpeakから1 µs 経過後のプ ラズマ及び磁場の様子を図8に示す.この結果より、早い 時刻でのプラズマをハイブリッドコードへの初期入力とす ることで、実験で確認されたものと同等な速度を持つプラ ズマ流を再現できている.また、実験で確認されたダブル ピークに似た波形も確認できる.しかし、超粒子のカウン ト数が非常に少なく、実験データと比較しての議論を行う ことは難しい.また、レーザーパルスの半値全幅が9.4 ns であり、Tpeakから5 ns で 3D ハイブリッドコードにデー タを受け渡すと、レーザーエネルギーが十分に入射されず、 生成されるプラズマが減少するという問題もある.

図 7 チャージコレクタ位置への超粒子到達数

図 8 Tpeak から 1 µs 経過後のプラズマ及び磁場 (a)Tpeak から 50 ns 後を初期プラズマとした場合 (b)Tpeak から 5 ns 後を初期プラズマとした場合

これらの結果より、シミュレーションコードの改良およ び実験条件の改良を提案する.まず、早い時間でカップリ ングした時にチャージコレクタ地点でのカウント数が非常 に少なくなるという問題に対しては、超粒子の数を増やす ことで改善することができる.また、レーザーのエネルギ ーが十分にプラズマに受け渡されるまで輻射計算を継続す る必要があるという点については、2D輻射流体コードの計 算に外部磁場を追加し、磁場の影響を考慮しながら長時間 計算する方法が考えられる.次に実験条件の改良について は、プラズマの膨張速度を遅くし、十分に熱緩和するまで に広がる半径を小さくすることが必要となる.そのために、 現在は直接照射であるレーザーを間接照射に変更すること や、より重い元素を用いてプラズマを生成することが考え られる.

6. 結論

レーザーアブレーションプラズマを用いた磁気スラス トチャンバーの原理実証実験をシミュレーションで再現す

るにあたって,高速なプラズマの取り扱いに問題が生じた. 従来のシミュレーション手法では,3D ハイブリッドコード にデータを引き継ぐ時点で高速なプラズマを考慮できてい ないことが判明した.現在のハイブリッドコードでは電子 温度を無視しているため、 プラズマが十分に熱緩和した状 態を初期プラズマとする必要がある.しかし,十分に熱緩 和するまで輻射流体コードでの計算を行うと、計算時間が 非常に長くなることに加えて、磁場の拘束を受けないまま プラズマが大きく膨張するという問題がある.そのため, 暫定的な対策として、熱緩和を待たずに、早い時間でのカ ップリングを試みた. その結果,実験と同等の速度を持つ 高速なプラズマ流が再現された.また,実験で観測された 特徴的な波形であるダブルピークに似た波形も観測された. ただし、早い時間でカップリングを行ったデータでは超粒 子のカウント数が非常に少なく,実験と比較しての議論を 行うことは難しい. また, カップリング時にプラズマの熱 エネルギーが無視されているという問題もある. そのため 今後は、シミュレーションコードと実験条件の両面から、 改良を行っていく必要がある.

参考文献

- C. D. Orth, *et al.* "VISTA A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion", UCRL-TR-110500 (2003)
- N. Saito, *et al.* "Optimizing a Magnetic Field Strength of a Magnetic Thrust Chamber", IEPC-2015-465p / ISTS-2015-b-465p (2015)
- 3) M. Yasunaga, et al.

Pb_71-Pb_77(2012)

"Experimental Demonstration of Magnetic Thrust Chamber for a Laser Fusion Rocket", Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 10, ists28, Pb_109- Pb_114 (2012)

- A. Maeno, *et al.* "Effect of Magnetic Field Strength on a Magnetic Thrust Chamber System", J. Propulsion & Power, Vol. 30, pp.54-61, 10.2514/1.B34911 (2014)
- A. Sunahara, *et al.* "Optimization of Extreme Ultraviolet Emission from Laser-Produced Tin Plasmas Based on Radiation Hydrodynamics Simulations", Plasma and Fusion Research, Vol. 3, 043(2008)
- 6) A. Maeno, *et al.* "Numerical Analysis of Magnetic Thrust Chamber System for Laser Fusion Rocket Considering the Creation Process of Laser-Produced Plasma", Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 10, ists28,

5