有人宇宙航行に用いる V2 ロケットエンジンのクラスター化の研究

Study of clustered V2 rocket engines for the manned space satellite

田内 思担^{*1}・須川 貴史^{*1}・秋山 和輝^{*1}・今井 麻樹子^{*1}・泉 彰悟^{*1}・福西 崇^{*1} 笹木 隆史^{*2}・柳沼 高太^{*2}・松本 幸太郎^{*3}・桑原 卓雄^{*4}

Shitan TAUCHI^{*1}, Takafumi SUGAWA^{*1}, Kazuki AKIYAMA^{*1}, Makiko IMAI^{*1}, Shogo IZUMI^{*1}, Takashi FUKUNISHI^{*1}, Takafumi SASAKI^{*2}, Kouta YAGINUMA^{*2}, Koutarou MATSUMOTO^{*3}, and Takuo KUWAHARA^{*4}

1. 研究背景

1.1 ロケット研究会

ロケットに関する基礎知識の取得を目的とした研 究会であり、日本大学理工学部航空宇宙工学科の学生 により構成されている. 2013 年度はロケットの基礎 知識の取得のため輪講を行い、2014 年度は化学平衡 計算ソフト「NASA-CEA」^[1]用いた推進性能の計算 を行い、V2 ロケットエンジンを用いた有人宇宙船の 打ち上げのための、飛翔計算、実験及び解析を行った.

$\overline{\alpha}$ I V L ロ ク ツ ト V 的 几	表 1	V2	ロケッ	トの諸元 [[]
---	-----	----	-----	-------------------

	エチルアルコール:75%	
<i>K</i> ::/17	水:25 %	
酸化剤	液体酸素	
燃料供給方式	ターボポンプ供給方式	
全長	14.0 m	
タンク内径	1.65 m	
ノズルスロート径	0.4 m	
燃焼室圧力	1.52 MPa	
酸化剤燃料比 O/F	1.23	
燃料流量	56 kg/s	
酸化剤流量	69 kg/s	
比推力(海面上)	203 s	
燃焼時間	65 s	

1.2 V2 ロケット

V2 ロケットは、ドイツが第 2 次世界大戦中に兵器 として開発した世界初のロケットであり、また現在の ロケット開発の土台となったものでもある. 図 1 に V2 ロケットの構造を示す. 表 1 に V2 ロケットの諸 元を示す.

図1 V2 ロケットの構造^[2]

2. 研究目的

V2 ロケットエンジンを使用した有人ロケットを地 球周回軌道に投入できる条件を求める.

3. 計算 · 解析条件

本項では,計算・解析するにあたっての条件を示す. また,今回検討する有人ロケットの最上段には正確な 軌道修正を容易に行うため,推力調整が可能なガスハ イブリッドロケットを用いることとした.

3.1 想定している諸条件

有人ロケットの諸条件を以下,表2のように想定した.

*1日本大学理工学部航空宇宙工学科 *2日本大学大学院理工学研究科航空宇宙工学専攻博士前期課程 *3日本大学大学院理工学研究科航空宇宙工学専攻博士後期課程 *4日本大学理工学部

表2 想定している諸条件

最終到達速度	7.91 km/s
最終到達高度	$350 \sim 400 \mathrm{km}$
ペイロード質量	3.0 ton
乗員	1人 (犬:1匹)
期間	7 日間
エンジン燃焼室圧力	1.52 MPa
加速度	3.5 G 以内

3.2 使用する V2 ロケットの仕様

V2 ロケットのエンジンを用いるが、当時の技術を そのまま用いるため、エンジンの性能が変わるような 設計変更は行わない.表3にV2 ロケットの仕様から の変更点、変更しない点を示す.

変更しない点	変更する点
燃焼室圧力	燃焼時間
燃料・酸化剤流量	ノズル開口比
酸化剤燃料比 O/F	タンク長さ
ノズルスロート径	燃料質量
タンク内径・外径	酸化剤質量

表3 変更点・変更しない点

4. 計算 • 解析

今回, 第1段から第3段までのロケットの構造質量 を,全体質量の25%,推進薬質量を75%とした. このとき,推進薬質量は, V2ロケットの場合,燃焼 時間65sで燃料が3900kg,酸化剤質量が4900kgで あるので,それを基準に今回設計した燃焼時間と燃 料・酸化剤流量から決定した.また,第4段の構造質 量は全体質量の50%とした.

重力加速度は高度により変化するものとし、ロケッ ト飛翔時の空気抵抗は考慮しないものとした.

計算・解析の過程では、仮のロケット質量を設定し、 表2に挙げた諸条件に合致するよう性能計算・飛翔計 算・クラスター化の解析を行った.計算・解析の結果, ロケットの段数は4段となる.

表4に,計算・解析から得られた結果を示す.また, 表5に,各段の質量,表6に各段のマスレシオ・出口 圧・大気圧(各段燃焼開始時)を示す.

表4 計算・解析結果

印米	到達	到達	開口	エンジン
叔剱	速度	高度	比	基数
1	1.72 km/s	58 km	2.51	26
2	4.34 km/s	175 km	10	5
3	7.82 km/s	378 km	10	1
4	7.91 km/s	379 km	81	1

表5 各段の質量

ペイロード質量	第1段	m _{pl1}	162300 kg
	第2段	m _{pl2}	30133 kg
	第3段	m _{pl3}	3700 kg
	第4段	m _{pl4}	3000 kg
構造質量	第1段	m _{st1}	117650 kg
	第2段	m _{st2}	33042 kg
	第3段	m _{st3}	6608 kg
	第4段	m _{st4}	350 kg
推進薬質量	第1段	m _{p1}	352950 kg
	第2段	m_{p2}	99125 kg
	第3段	m _{p3}	19825 kg
	第4段	m _{p4}	350 kg
ロケット質量	第1段	m _{s1}	470600 kg
	第2段	m _{s2}	132167 kg
	第3段	m _{s3}	26433 kg
	第4段	m _{s4}	700 kg
	ペイロード	m _{pl}	3000 kg
	合計質量	М	632900 kg

表6 各段のマスレシオ・出口圧・大気圧

印光		ノズル	大気圧
段级 1	ϕ_i	出口圧力	(作動スタート時)
1段目	3.9	0.144 MPa	0.1 MPa
2段目	5.39	0.0212 MPa	34 Pa
3段目	8.14	0.0212 MPa	0.007 Pa
4段目	1.23	0.00147 MPa	4×10 ⁻⁶ Pa

前述したように最上段である第4段は,ガスハイブ ッドロケットエンジンを用いることとした.以下に, 第1段から第4段の計算・解析過程を示す.

4.1 第1段

NASA-CEA での性能計算の結果から、ノズル開口 比 A_e/A_t を以下のように設定した. A_e はノズル出口面 積、 A_t はノズルスロート面積である.

ノズル開口比 $A_e/A_t = 2.51$

また、この時の大気圧 P_{al} (高度 0km) とノズル出 ロ圧力 P_{el} の関係は次の通りであり、70%以下になった.

$$\frac{P_{a1}}{P_{e1}} = \frac{0.1 \,\text{MPa}}{0.144 \,\text{MPa}} \times 100 = 69.6 \,\% \tag{1}$$

この時の比推力 Isp は, NASA-CEA での性能計算の 結果から 217 s となる.

以上より,第1段燃焼終了時の到達速度・高度は以 下の式から求めることができる.(2)式は到達速度,(3) 式は到達高度の式,(4)式はノズル出口速度の式,(5) 式は推力の式である.また*i*は段数である.第1段燃 焼終了時の到達高度が,空気密度が低くなる 50 km 以 上(成層圏)となるように計算した.また,高度 0 km での重力加速度は 9.81 m/s²とした.これらの条件を 満たす,第1段における燃焼時間として,104 s と設 定した.

$$v_i = v_{i-1} - gt_{bi} + u_{ei} \ln \phi_i$$
 (2)

$$h_{i} = h_{i-1} - \frac{1}{2} g t_{bi}^{2} + u_{ei} t_{bi} \left\{ 1 - \frac{\ln \phi_{i}}{(\phi_{i} - 1)} \right\}$$
(3)

$$u_{ei} = Isp \cdot g - \frac{(P_{ei} - P_{ai})A_{ei}}{\dot{m}}$$
(4)

$$F = \dot{m}u_{ei} + \left(P_{ei} - P_{ai}\right)A_{ei} \tag{5}$$

 P_{ei} は各段のノズル出口圧力, P_{ai} は各段燃焼開始時の大気圧である.

上式から,以下のようになる.

$v_1 = 1.72 \text{ km/s}$, $h_1 = 58 \text{ km}$

推力は,推力重量比が1を上回るよう計算した. V2 ロケットエンジンのクラスター化をして,以下の 推力重量比が得られた.*T*は推力,Wはロケット重量 とする.

$$\frac{T}{W} = \frac{6905 \,\mathrm{kN}}{6209 \,\mathrm{kN}} \approx 1.11 > 1$$

また, V2 ロケットエンジン 1 基での推力は 266 kN である.

4.2 第2段·第3段

第2段・第3段では,表2の条件を達成できるよう 検討した結果,ノズル開口比を10と設定し計算・解 析を行った.この時の比推力Ispは,NASA-CEAでの 性能計算の結果から275sとなる.

また, 想定した諸条件などを満たす燃焼時間を検討 した結果, 第2段・第3段の燃焼時間を154sと設定 した.

以上より,第2段・第3段燃焼終了時の到達速度・ 高度は(2)(3)式から求めることができる.よって以下 のような結果が得られる.

表7 第2段・第3段の到達速度・高度

段数 i	到達速度 v _i	到達高度 h_i
2	4.34 km/s	175 km
3	7.82 km/s	378 km

推力は,第1段と同様に,推力重量比が1を上回る よう計算した.第2段の場合,V2ロケットエンジン をクラスター化すると以下のようになった.

$$\frac{T}{W} = \frac{1656 \text{ kN}}{1563 \text{ kN}} \approx 1.06 > 1$$

また,第2段における V2 ロケットエンジン1 基で の推力は 63.7 kN である.

第3段の場合, V2 ロケットエンジン1 基で以下の ように推力重量比が1を上回ることができる.

$$\frac{T}{W} = \frac{319 \text{ kN}}{280 \text{ kN}} \approx 1.14 > 1$$

第3段におけるV2ロケットエンジン1基の推力は, 12.3 kN である.

図2にV2ロケットエンジンの比推力とノズル開口 比の関係について示す.

4.3 第4段

3項に前述したように,第4段にガスハイブリッド ロケットを用いる.第3段燃焼終了時の速度で7.82 km/s まで到達することができているため,第4段で は少量の推進薬で表2の条件を達成することが可能 である.また,ガスハイブリッドロケットの推進薬組 成は表8のようにした.

	表 8 推進剤	
批准革	AP	70 %
推進衆	HTPB	30 %
酸化剤	N ₂ O	100 %

ガスハイブリッドロケットエンジンの場合,(5)式

中の流量は酸化剤流量 \dot{m}_o と推進薬流量 \dot{m}_f の和である.

今回,諸条件を満たすために,流量*m*を13 kg/s とした.また,燃焼時間を26 sとした.

(2)(3)式より,最終到達速度・高度は以下のように なる.

$$v_4 = 7.91 \text{ km/s}$$
 , $h_4 = 379 \text{ km}$

推力重量比は以下のようになる.

$$\frac{T}{W} = \frac{34.7 \text{ kN}}{32.3 \text{ kN}} \approx 1.07 > 1$$

以上の結果を図3に示す.

5. 実験

5.1 実験概要

V2 ロケットエンジンを用いての解析を行うにあた り,高度の変化による環境温度の変化によってタンク 内の推進剤(エチルアルコール75%,水25%)が凝 固しないことを確認するために,推進剤の凝固点測定 実験と第4段に用いるガスハイブリットエンジンの 推進薬の燃焼速度に関する実験を行った.

5.2 実験1(凝固点測定実験及び結果)

水とエタノールの混合液の凝固点は, 過冷却におけ る温度履歴と目視で見ることで測定を行った. しかし, 実験的に凝固点を測定するのは困難なため, 質量モル 濃度 *m* と溶媒のモル沸点上昇定数 *k* から求めた凝固 点降下度 *Δt* を用いて, 既知の値を代入, 式変形し得 られた(6)式(理論値)⁶⁶が正しいことを確認する実験 となった. 寒冷剤には氷水+塩, ドライアイスを用い た. 温度 *T*[℃]とする. ここでの*x* はエタノールの水 に対する質量比である.

この結果から,(6)式による理論値は整合性がある と考えられ,その結果 V2 ロケットエンジンのタンク 内では凝固は起こりにくいと考えられる.

5.3 実験2(燃焼速度測定実験及び結果)

第4段のモーター内圧力が1.0 MPa または1.5 MPa とした.この時の推進薬の燃焼速度が必要なため.燃 焼速度の測定実験を行い,圧力と燃焼速度の関係を求 めた.

表 9 実験条件

燃焼器内圧力 [MPa]	0.5 , 1.0 , 1.5 , 2.0 ,2.5
燃焼器内雰囲気(置換)	窒素 N ₂
AP:HTPB	70:30
実験回数	2 回

ストランドバーナー内に, 事前にニクロム線を用い た点火装置をとりつけてある推進薬をセットし, 電気 的に加熱することで着火し推進薬を燃焼させる. その 様子を観察窓からハイスピードカメラで撮影し, 同時 に圧力センサを PC に取り付け, 燃焼器内の圧力履歴 を得た.

次にカメラで撮影した映像から推進薬の燃焼時間 を求め,予め測定した推進薬の高さを燃焼時間で除し て燃焼速度を求めた.図5に各圧力による燃焼速度の 関係を記す.

実験値の累積近似をすると,近似線の式は以下のようになる.

$$r = 2.56 P_C^{0.31} \tag{7}$$

以上の結果から、Vieille の法則より、定数は 2.56, 圧力指数は 0.31 であり、1.0 MPa のときは 2.56 mm/s、 1.5 MPa のときは 2.80 mm/s となった.

6. ロケット構造

計算・解析結果及び実験結果を踏まえて, ロケット

の構造を検討した.

6.1 ロケットの形状

図6に、本研究で想定した有人ロケットの全体図を 示す.

図6 全体図(単位:m)

次に第1段〜第4段の断面図を示す.ハニカムパタ ーンでクラスター化した.第1段の特徴は中央の16 本に加え外側に10本補助用ブースターとして固定 されており,切り離し時にすべて同時に落下させる. また,切り離しの方法については爆発ボルトを採用し た.ノズルやタンクの固定には薄く同じくハニカムパ ターンの穴の開いた円盤によって固定されている.左 側の図がノズル断面で,右側の図がタンクである.

6.2 カプセル構造の概念検討

ロケットのカプセル構造について検討した.カプセ ルの全体の質量は3 ton として、ペイロードを898 kg、 構造質量を2102 kg として設定した.乗組員は1人に し、狭い空間で一週間一人という状況のストレスを考 慮してペットで犬を連れて行くことにした.カプセル の構造にはアルミニウム、炭素複合材を使用すること とした.カプセル内には生命維持のために必要な空気 や食糧,生活用水,衣類,健康維持のための暖房や, 運動器具を想定して搭載し,その質量を表 10 に示す.

ペイロード質量	質量[kg]
人間	60
柴犬	8
食糧(6日分)	5.4
水	31.5
酸素(6日分)	6.3
窒素(6日分)	28.8
暖房	30
運動器具	60
寝袋	1
衣類(6日分)	5.34
船内宇宙服	100
その他	562
ペイロード質量合計	898
構造質量	2102
全体合計質量	3000

表10 カプセル内の質量一覧

また,その他には宇宙空間へ行き,帰還するまでに 必要な装置や,生命維持に必要な設備を表 11 に示す.

その他	質量[kg]
日焼け止め	0.01
備品	2
空気清浄器	15
トイレ	60
エアバッグ	6
シートベルト	60
無線	10
計算機器	100
モニター操縦支援	100
太陽光パネル	65.1
再突入用パラシュート	144

次にカプセル内部を説明する. すべての装置はカプ セルの壁に接触するように配置する,座席について, 打ち上げから宇宙空間へ到達まではあおむけの姿勢 で,帰還時には通常の足が落下方向に向く体制で座り 帰還する. そのため,座席は二通りの向きで座れるも のになる.

図11 上側から見たカプセル内の配置図

また座席について、上昇時は図 11 のように壁面に 接して配置されているが、宇宙空間での活動には不便 であるので、図 12 の位置で船内での生活や、帰還を する. そのため座席下にはレールを敷き、スライドし て移動できるようにする.

図12 検討したカプセル内部概略断面図

7. 結論

V2 ロケットエンジンのクラスター化とガスハイブ リッドロケットを組み合わせることで,3.0 ton のペイ オードを搭載した有人ロケットを,高度 380 km の地 球周回軌道へ投入することは可能である.

参考文献

- Gordon S. and McBridge B. : "Computer Program for Calculation of Complex Equilibrium Combustions and Applicants", NASA RP-1331, 1994.
- [2] J.R.Verbeek: Technical data V2 rocket, V2-VERGELTUNG' FROM THE HAGUE AND ITS ENVIRONS, 2003.
- [3] 木村 逸郎: ロケット工学, 養賢堂, pp.8-10, 1994.
- [4] 桑原 卓雄: ロケットエンジン概論, 産業図書, 2009.
- [5] 日本アルコール協会: JAAS001「エタノール」,アルコ ール教会規格, 2012.
- [6] 東京書籍編集部: ニューグローバル化学Ⅱ,東京書籍, 2006.