長距離飛行用パルスプラズマスラスタ搭載 大阪工業大学プロイテレス衛星2号機の開発・研究

○西村有史, 上村拓也, 池田知行, 田原弘一(大阪工業大学)

Research and Development of the Osaka Institute of Technology 2nd PROITERES Satellite with a Long-Distance Flight Pulsed Plasma Thruster Yoshifumi Nishimura, Takuya Kamimura, Tomoyuki Ikeda, Hirokazu Tahara (Osaka Institute of Technology)

Abstract

The Project of Osaka Institute of Technology Electric-Rocket-Engine onboard Small Space Ship (PROITERES) was started at Osaka Institute of Technology in 2007. In the 1st PROITERES, a nano-satellite with electrothermal pulsed plasma thrusters (PPT) was launched by Indian PSLV C-21 rocket on September 9 in 2012. Furthermore, the 2nd PROITERES has been developed since 2010. In the paper, the features of research and development of the 2nd PROITERES satellite with a long-flight pulsed plasma thruster was reported.

Key Words: PROITERES, Nano-Satellite, a Long-Distance Flight, Electric Thruster, Sun Sencer, Magnetic Torquer

諸言

大阪工業大学では、2007年に電気推進ロケットエン ジン搭載小型スペースシッププロジェクト 「PROITERES」(Project of OIT Electric-Rocket-Engine onboard Small Space Ship)を立ち上げた.そして、2010年 には 10kg 級の超小型人工衛星 PROITERES 衛星 1 号機 のフライトモデル(FM)が完成した.2012年9月9日に はインド宇宙研究機関(ISRO)の極軌道ロケット PSLV C-21を用いて、サティシュダワン宇宙センター(インド南 東郡スリハリコタ島)より、電気推進ロケットエンジン を搭載した PROITERES 衛星 1 号機の打ち上げに成功 した.図1に PSLV C-21の打ち上げ写真を示す.

PROITERES2 号機の概要

2010年11月には2016年の打ち上げを目標とした超 小型人工衛星 PROITERES 衛星2号機の開発が開始さ れた. PROITERES 衛星2号機は、PROITERES 衛星1号 機の技術を基にパルスプラズマスラスタ(PPT)を長距離 飛行用とし、大電力化させた超小型人工衛星の開発を目 指している.現在は衛星の概念設計が終了し、ブレッド ボードモデル(BBM)の製作段階に移行している.本研究 では衛星に搭載するロケットエンジン、姿勢制御機器で ある太陽センサ、磁気トルカの設計・製作を行っている. PROITERES 衛星2号機のイメージ図と諸元を図2と表 1に示す.

図 1 PSLV C-21 の打ち上げ写真(ISRO 提供)

図2 プロイテレス衛星2号機のイメージ図

項目	内容	
質量	50kg	
サイズ	一辺約 50cm の立方体	
電力	60[W]	
打ち上げ予定	2016 年	
姿勢制御方式	磁気姿勢制御	
運用期間	1年以上	

表1 衛星2号機の性能

衛星 2 号機は総重量が 50kg で外形寸法が 500mm の 立方体であり,前回の外形寸法が 290mm であった衛星 1 号機よりもサイズアップした構体である.搭載ロケッ トについては現段階では未定であるが,今回は磁気姿勢 制御方式のみを採用し,有芯型磁気トルカを用いて姿勢 制御を行うので,400~600km の地球低軌道への投入を予 定している.

そしてメインミッションとして,大電力化したパル スプラズマスラスタ(PPT)を利用した地球低軌道での長 距離軌道変更,また三菱プレシジョン製のリアクション ホイールを用いた宇宙空間での姿勢制御の実証の二つ を設定している.

PROITERES2 号機の打ち上げ予定

今後は 2014 年度末までに搭載機器の開発を終え,そ の動作確認を終えた後,試験機(Engineering Model (EM)) の製作・試験を行う.約7か月間の開発期間の後,動作 確認にて衛星2号機をほぼ完成の状態にする.2015年 内には打ち上げモデル(Flight Model(FM))の製作に着手 し,2016年の夏には衛星を完成させ,最終確認を行い, 打ち上げの準備に取り掛かる.そして2016年12月に打 ち上げとする.衛星2号機の打ち上げスケジュールを図 3に示す.また,打ち上げの際の搭載ロケットは現段階 で未決定であるが,JAXAの H2A ロケットへの搭載を 第一候補としており,JAXAの条件をクリアできるよう な衛星機器の開発を行っている.

図3衛星2号機の打ち上げスケジュール

搭載する電気推進ロケットエンジン

衛星 2 号機に搭載する PPT の搭載のメリットを以下 に記述する.

- 推進剤に固体であるテフロン (Poly Tetra Fluoro Ethyene(PTFE)) を使用しており,推進タンク, シール部品,メカニカルバルブ等が不要であり小 型・軽量化の面で有利である.
- 構造が簡単なため部品点数が少なく、噴射の信頼
 性が高い、そして打ち上げ時の衝撃や振動に強い。
- パルス作動であるため、ON/OFF 回路におけるデ ジタル制御が可能である.
- ウォームアップ時間が1秒程度であり、待機電力 がほぼ0である.
- 5) 放電はピークで数 kA,数 µs 程度のパルス状電流 であり,10J 程度の充電エネルギーにおいてもプラ ズマへのエネルギー供給は瞬間では MW オーダー となる.

これらのメリットがあるため衛星 2 号機の搭載に適 している.

本学では電気推進ロケットエンジンである PPT を独 自で研究開発を行っている.今回,小型人工衛星用 PPT として製作を行うにあたってのコンセプトを以下に記 述する.実際に開発し,衛星1号機に搭載した PPT の 外観と内部構造を図4に示す.

- 1) 振動に耐えることのできる構造にする.
- 2) 磁場干渉を抑える.
- 立方体を維持するため壁面に対しフラットに搭載 する.

a) PPT の外観 b) PPT の内部構造 図 4 開発した衛星 1 号機用 PPT

今回の PPT の目標は初期軌道から 200km 軌道上昇さ せることである.そのため衛星 1 号機の PPT からの長 距離飛行化や大電力化が求められている.

そして,長距離飛行化のための改良点として新たに多 放電室型 PPT の開発を行っている.新型多放電室 PPT の外観と内部構造を図5に示す.新しいPPTの最大の 特徴は図5を見てわかる通り,カソード,PTFE,アノ ードをPTFEボディーに埋め込むことで気密性の向上が 期待できることである.また,固定用ボードが放熱板の 役割を果たし,冷却性の向上も期待できる.

a) 新型 PPT の外観
 b) 新型 PPT の内部構造
 図 5 開発した多放電室型 PPT

PPT の大電力化に関しては、衛星1号機に搭載したコ ンデンサを13枚並列接続することで、コンデンサ容量 を19.5µF,投入エネルギーを31.6Jとすることができた. この変更により、インパルスビットの向上が期待できる. 旧型と新型の噴射の比較を図6で示す.図6の噴射の比 較より1号機のPPTより力強い噴射になっていること がわかる.

a) 旧型 PPT の噴射の様子
 b) 新型 PPT の噴射の様子
 図 6 旧型と新型 PPT の噴射比較

姿勢制御機器

衛星 1 号機の姿勢制御方式は磁気トルカを用いた能 動制御である磁気姿勢制御と,伸展ブームを用いた受動 制御である重力傾斜安定を採用しており,姿勢制御機器 は姿勢決定用センサに太陽センサ,磁気センサ,ジャイ ロセンサ,アクチュエータに空芯磁気トルカ,伸展ブー ムを搭載していた.

今回,衛星2号機の姿勢制御方式は衛星1号機の伸展 ブームを取り外し,空芯から有芯磁気トルカに変更した 磁気姿勢制御方式のみを採用した.その姿勢制御機器は 衛星1号機から新たに姿勢決定用センサに GPS,地球セ ンサ,アクチュエータにリアクションホイールを搭載す る.衛星2号機に搭載する姿勢制御機器の一覧を表2に 示す.

表2衛星2号機に搭載する姿勢制御機器

	名称	搭載 数量	民生品 購入	自作
	磁気センサ	1	0	
له ديله	ジャイロ センサ	3	0	
6.2.9	GPS	1	0	
	地球センサ	1	0	
	太陽センサ	$4 \leq$		0
アカチー	磁気トルカ	3		0
エータ	リアクショ ンホイール	1	0	

衛星2号機では,表2のように5種のセンサと2つの アクチュエータを用いて姿勢制御を行う.磁気センサ, ジャイロセンサ,GPS,地球センサ,リアクションホイ ールは民生品を購入し,太陽センサは民生品を利用し, 磁気トルカは材料を揃えて設計・製作を行っている.

太陽センサ

太陽センサは、太陽の方向を検出することにより、衛 星の姿勢角を求めるセンサである.ほかの姿勢センサに 比べて視野が広く取れ、また太陽光強度は他の天体と比 較して圧倒的に高く、信号検出は比較的容易であるので、 定常運用時の他に、衛星の姿勢が異常になったときの姿 勢再捕捉のためのセンサとしても広く用いられている. とくに、姿勢損失のような事故が起こったときの再補足 センサとして有用である.

機器としては一般的にスリットと受光部に分かれて おり、スリットでは視野角の範囲、受光部では分解能な どが決まる.本校でも一般的なピンホールスリット方式 を採用している.角度検出原理と換算式を図7と以下に 示す.

図7 太陽センサ角度検出原理

 $\tan \theta = h/x$

入射光がスリットを通過して,受光部に照射すると上 式が成立する. x は受光部のセンサで位置を検出し, h は太陽センサ設計時点で決定する. *θ* は光の入射角度で ある.

受光部である PSD は,2 号機が 50kg 級衛星のため1 号機と同様にセンサ質量が小さく,姿勢がどこでも検出 できるように広範囲での太陽光検出が望ましい.

そこで、小型化、広動作温度範囲、簡単な回路、広視 野範囲であるという観点から角度位置変換方式で浜松 ホトニクス社の二次元 PSD(S5991-01)を現在検討中であ る.二次元 PSD の外観図とスペックを図 8、表 3 に示 す.

図 8 二次元 PSD S5991-01

検出方式	2 次元 PSD
サイズ	$16.5 \times 14.5 \times 1.26$ (h)mm
受光面	9×9mm
動作温度範囲	-20~60°C
分解能	1.5µA
飽和電流	500μΑ
受光感度	0.6A/W

表3 二次元 PSD の性能

太陽センサは衛星2号機の各面(展開するパドルの2 面を除いて)に搭載する予定である.そして姿勢決定用 センサとして正確な感知を目標とするならば,各面でセ ンサの読み取り範囲が重ならなければいけない.そのた め視野角は最低±45度より大きい設定にする必要があ る.本学で製作する太陽センサの要求性能として,セン サを最も離しても約4.4mの距離で読み取り範囲が重な る,視野角±50度を目指す.これは太陽から衛星まで の距離が約1.5億km程度離れていることから検出する 視野角としては十分であるといえる.図9に太陽センサ 視野角の3Dモデル図を示す.また,ピンホール穴を小 さくすることで精度を良くすることができると考え,目 標精度を誤差±1度以内と定めた.

図9太陽センサ視野角モデル図

衛星2号機用に制作した太陽センサを図10に示す. また,太陽センサの緒元を表4に示す.

図 10 太陽センサ

表4 太陽センサの緒元

サイズ	25mm×25mm×高さ6mm
ピンホール素材	アルミニウム
ピンホール穴	直径 0.5mm
センサカバー素材	MELDIN

今回衛星 2 号機に搭載する太陽センサは衛星 1 号機 に搭載された太陽センサのピンホールスリット方式を 引き継ぎ,細部を変更した.一つは構造の面で PSD を 埋め込み式にし,上のカバーで PSD の淵を抑えること で振動でもセンサがずれることがないようにした.もう 一つは電気的な面でセンサの電極からの線に負担をか けないようにして,電気での誤差を減らせるように設計 した.サイズの変更はその誤差を減らすためである.衛 星 1 号機と衛星 2 号機の太陽センサの比較を図 11 に示 す.

a)衛星1号機用
 b)衛星2号機用
 図11太陽センサ裏比較

角度検出実験

実験は光源に太陽光と波長が近いハロゲンランプを 使用し、衛星1号機のカメラ試験に使用した光学試験機 を用いて角度検出実験を行った.

実験目的は製作した太陽センサが要求性能を発揮で きるかを確認するものである.読み取り機器にはオシロ スコープ,電源に安定化電源を使用する.

そして実験方法は,暗室にした状態で回路に安定化電 源より 5V 印加し,オシロスコープにて確認する.そこ から太陽センサを取り付けた光学試験機に 180mm 離し たところからハロゲンランプをあて,センサからの出力 4つ(X1, X2, Y1, Y2)をそれぞれオシロスコープで 読み取る.光学試験機によってセンサの角度をずらして いき,±50度の範囲で5度ずつ読み取っていく.それ を角度検出原理の式に当てはめ,グラフに表す.角度 検出結果を図 12 に示す.

図 12 角度検出結果

図 12 の通り,要求性能である視野角±50 度までの範 囲を検出することができた.しかし,精度は平均で誤差 ±1.9 度,最大で誤差±4.1 度となり,要求性能は満たせ なかった. 誤差の原因に電子部品による誤差や発生する ノイズによる読み取り誤差, ピンホール穴の径を小さく し過ぎたこと, 光源からの距離の近いことなどが考えら れる.

予想環境外乱

2 号機の 3D モデルを使用して慣性モーメントを求めた. それを表 5 に示す.

表5衛星2号機の慣性モーメント

Ix [kg·m ²]	2.986
Iy [kg·m²]	1.898
Iz [kg·m ²]	2.205

・ 地磁気トルク

地磁気トルクは次式より求めることができる.

$$T_x = N_y B_z - N_z B_y$$

$$T_y = N_z B_x - N_x B_z$$

$$T_z = N_x B_y - N_y B_x$$

N は衛星の残留磁気モーメント[Am²], *B* は地磁気ベクトル[μT]である.ここでは衛星の残留モーメントの参考値として表6を用いた.

表6残留磁気の参考値

衛星の クラス	設計基準	磁気双極子モーメン ト因子[Am ² /kg]
Class1	磁性体を 管理・配置	1.0x10 ⁻³
Class2	磁性体・カレント ループを管理	$3.5 \mathrm{x} 10^{-3}$
Class3	軟磁性体を 利用せず	10x10 ⁻³

表6より,プロイテレス衛星2号機は残留磁気対策を 施していないことから Class3 とした.

また打ち上げ予定高度である 600km~1000km の軌 道高度における平均磁場を,国際標準磁場モデルの予測 結果をもとにまとめたものを表7に示す.

表7 平均磁場ベクトルの予測結果

H[km]	Bx[µT]	$By[\mu T]$	Bz[µT]
600	14.5	3.6	28.2
700	14.0	3.4	27.2
800	13.3	3.2	26.2
900	12.8	3.1	25.2
1000	12.3	2.9	24.2

重力傾斜トルク

重力傾斜トルクは次式で求めることができる.

$$Tg_{x} = \frac{3\mu e}{Re^{3}} |I_{z} - I_{y}| \sin \phi$$
$$Tg_{y} = \frac{3\mu e}{Re^{3}} |I_{z} - I_{x}| \sin \theta$$
$$Tg_{z} = \frac{3\mu e}{Re^{3}} |I_{x} - I_{y}| \sin \phi$$

ここで μe は地球重力係数, Reは軌道半径[km], Ix, Iy, Izは衛星の X, Y, Z 軸周りの慣性モーメント[Nm²], そして ϕ , θ , ϕ はロール, ピッチ, ヨー軸周りの地心方向 ずれ角[deg]である.

・ 太陽輻射圧トルク

太陽輻射トルクは次式から求めることができる.

$$T_{sp} = P_s A_s L_s (1+q) \cos i$$

 P_s は太陽輻射圧定数 $[N/m^2]$, A_s は衛星の表面積 $[m^2]$, L_s は衛星の図面上の中心点から重心までの距離 [m], iは太陽光入射角[deg], qは衛星表面の反射率 $(0 \le q \le 1)$ である.これは静止軌道以上の高度では衛星 にかかる最大の外乱トルクである.太陽輻射圧トルクは 衛星の姿勢によって変化するので,最悪姿勢を想定して 計算した.

・ 空力トルク

空力トルクは次式から求めることができる.

$T_a = 0.5L\alpha\rho(h)A\alpha Cdv^2$

 $L\alpha$ は重力と空力圧力中心距離[m], $A\alpha$ は空気抵抗になる衛星断面積[m²], Cdは空力係数, v は基準高度での地球周回速度, $\rho(h)$ は基準高度での大気密度で算出には理科年表を用いた. v は次式で表される.

$$v(h) = \sqrt{\frac{\mu e}{Re+h}}$$

ここで, µeは地球重力係, Reは地球半径, hは軌道高 度である.空力トルクも太陽輻射圧トルクと同様に姿勢 によって変化するので, 最悪姿勢を想定し計算した.

・ 総外乱トルク

すべての環境外乱を計算し総外乱としてすべてまと めたものを図 13 に示す.

このグラフより,100km~300km までは空力トルクが 支配的であり,打ち上げ予定の軌道予定高度 600km 付 近では残留磁気トルクと重力傾斜トルクが他の外乱ト ルクを上回っていることがわかる.

この時の総外乱トルクは 3.09×10⁻⁵Nm であり,これ より有芯磁気トルカで姿勢制御を行うためには、この総 外乱を上回りトルクを生み出すということが設計条件 となる.

磁気トルカ

磁気トルカは衛星内に設けられた有芯ソレノイドと, 地球磁場の間に生じるトルクによって,衛星の姿勢制御 を行うアクチュエータである.高度 100~1000 km の低 軌道では,地磁気トルクは重力傾斜トルク,太陽輻射圧 トルク,空気抵抗トルクなどの外乱に比べて,十分大き くすることができる.しかし瞬時に発生するトルク量が 小さいため,時間をかけて徐々に角運動量を獲得し制御 を行う.ソレノイドを通過する電流によってトルクを発 生させるため推進剤の消費に伴う寿命の制約がなく,ま たスラスタのように排気によって衛星周辺の空間,また は機器を汚染する懸念がないという特徴を持つ.

磁気トルカの最低限必要な磁気モーメントは以下の 次式で表される.

M = T/B

*T*は外乱トルク[Nm²],*B*は軌道予定高度の地球磁場 [T]の平均値となる.上記の予想環境外乱より,高度 600km付近にて最低限必要な磁気モーメントは 0.6Am² とわかる.磁気トルカは瞬時に働く力が小さいため,制 御力に余裕をもたせ、設計値を約10倍となる磁気モー メント 6.0Am²を要求性能とした. また, 1 台の消費電 力を 0.5W 以内に抑えることを目指して製作を行った. 製作した磁気トルカとその性能を図14と表8に示す.

図 14 有芯磁気トルカ

コア素材	パーマロイ PB	
コア直径	8 mm	
コア長さ	300 mm	
巻き数	1800巻(600巻を3層)	
動作電圧	5 V	
導線	銅 Ø0.5 mm	

表	8	磁気	トルカ	の緒元
---	---	----	-----	-----

性能評価試験

磁気トルカに安定化電源を用いて電流を流し,一定距 離にガウスメータを設置して磁気トルカの磁束密度を 計測した.このとき、電圧は衛星から供給されるバス電 圧を5Vとする. 測定装置であるガウスメータの測定部 分と磁気トルカの位置関係を図15に示す.

図 15 ガウスメータと磁気トルカの位置関係

また,計測結果を磁気モーメントに変換し,理論値と 比較した.なお、図15より測定装置と磁気トルカの中 心との距離を R,磁気トルカのコアの長さを L,測定し た磁束密度を B, μ₀は真空の透磁率4π×10⁻⁷として理 論式を以下に示す.

測定結果を図16に示す.

図16 測定値と理論値の比較

印加電流 0.2A で目標値である 6.0Am²を理論値,実測 値を共に上回ることがわかった.この時の消費電力は 0.2Wとなり、要求性能を達成することができた.

今後の活動

今後は、各搭載機器を完成させ、それぞれのドライバ を製作し、それらを恒温槽、真空チャンバー等を用いて 温度試験,真空試験,振動試験を実施していく.

参考文献

- 1) 上村拓也, 山崎敬史, 恵上直樹, 池田知行, 田原弘一, 「大阪工業大学プロイテレス衛星 1 号機の最終運 用報告と衛星2号機の開発」平成26年度宇宙輸送 シンポジウム, STEP-2013-057, 2014 年1月, JAXA 宇宙科学研究所(神奈川県相模原市)
- 2) 栗木恭一, 荒川義博:「電気推進ロケット入門」, 東 京大学出版会,pp.7-11 (2003)
- 3) 金岡啓太,藤田亮太,村岡力夫,田原弘一,脇園尭「大阪 工業大学プロイテレス衛星2号機搭載用電熱加速型 大電力パルスプラズマエンジンの開発研究」プラズ マ研究会,PST-14-016,2014 年
- 4) Rikio Muraoka, Chen Huanjun, Shuya Kisaki, Masato Tanaka, Hirokazu Tahara and Takashi Wakizono : Performance Charactristics of Electrothermal Pulsed Plasma Thruster Systems onboard Osaka Institute of Technology PROITERES Nano-Satellite Series, 29th International Symposium on Space Technology and Science, Nagoya Congress Center, ISTS2013-b-13, 2013.9.

- 5) Jun-ichi Ozaki, Tomoyuki Ikeda, Tatsuya Fujiwara, Masaya Nishizawa, Shunsuke Araki, Hirokazu Tahara and Yosuke Watanabe : Development of Osaka Institute of Technology Nano-Satellite "PROITERES" with Electrothermal Pulsed Plasma Thrusters, 32nd International Electric Propulsion Conference, Kurhaus, Wiesbaden, Germany, IEPC-2011-035, 2011.9.
- 6) Hirokazu Tahara, Yusuke Ishii, Masato Tanaka, Masamichi Naka and Yosuke Watanabe : Flowfield Calculation of Electrothermal Pulsed Plasma Thrusters for the PROITERES Satellite, 32nd International Electric Propulsion Conference, Kurhaus, Wiesbaden, Germany, IEPC-2011-037, 2011.9.
- 7) Naoki Egami, Takaaki Matsuoka, Masaaki Sakamoto, Yoichi Inoue, Tomoyuki Ikeda and Hirokazu Tahara : R&D, Launch and Initial Operation of the Osaka Institute of Technology 1st PROITERES Nano-Satellite and Development of the 2nd and 3rd Satellites, 29th International Symposium on Space Technology and Science, Nagoya Congress Center, ISTS2013-f-12, 2013.9.