5kW級アノードレイヤ型ホールスラスタの性能に関する研究

九大・総理工 山本 直嗣
九大・総理工 伊藤 匠
九大・総理工 中島 秀紀
ISAS/JAXA 細田 聡史
ISAS/JAXA 月崎 竜童

1. 研究の背景

有人探査時や SSPS 建設用カーゴの主推進機 として、数十 kW 級の大型電気推進機の開発が 迫られている. 実際に NASA の 457M¹⁾やロシア D-160²⁾ 等に見られるように,大型のホールス ラスタの開発が進められている.ホールスラス タはソビエトが中心となって開発が進められて きた電気推進機のひとつであり、その特徴とし て、イオン加速領域に電子が存在するため、空 間電荷制限則をうけず、このため推力密度が高 くコンパクトという特徴がある.3-7)また長寿命 化が期待でき、比推力 1500-2000 秒で効率が 50%以上とよいという点も利点である. そのた めホールスラスタは人工衛星の軌道変更や、人 工衛星や宇宙大型建造物の南北制御などの地球 近傍ミッションに適しており、現在最も注目を 浴びている電気推進機である。宇宙機への搭載 例として、月探査の SMART-1⁸⁾の主推進や静止 衛星の南北制御 %などが挙げられる.

ホールスラスタには大きく分けてアノードレ イヤ型とマグネチックレイヤ型がある. 6 現在 の主流はマグネチックレイヤ型であるが、大電 力化において、コンパクトさ、推進効率、寿命 等の潜在能力の高さから、日本独自の In space propulsion としてはアノードレイヤ型ホールス ラスタが最右翼になると考えている. Robust Anode-layer Intelligent thruster for Japan IN-space propulsion(RAIJIN)プロジェクトとして, 日本のホールスラスタ研究開発グループが一体 となって 2011 年度から開発がスタートした. そ のマイルストーンとして、5kW級アノードレイ ヤ型ホールスラスタを開発し、宇宙科学研究機 関,宇宙科学研究所イオンエンジン耐久試験装 置において性能取得実験を行った. その成果を 報告する.

2. 実験装置

製作したホールスラスタの外観図を図1に示 す.設計コンセプトとしては、Magnetic Shielding も適用可能にすることや放射冷却での熱の成立 性が確認可能な形にすること、セラミック部品 を出来るだけ削減する事という3つのコンセプ トのもと設計した.設計点を表1に示すが、高 推力モードと高比推力モードの2つの動作点で の作動可能なスラスタとなっている.一つは放 電電圧300Vで360 mNの軌道遷移時に使用す る高推力モードであり、もう一つは比推力3000 秒の惑星探査用の高比推力モードである.

加速チャンネルの外径は94mmであり、ホロ ーアノードを採用している.4 つの外部ソレノ イドコイルと,一つのスラスタ中心部のソレノ イドコイルと磁極によって加速チャンネル内に 半径方向の磁場が印加されている. このコイル に流す電流および内側と外側に流す電流の比を 変化させ、加速チャンネル内に印加する磁束密 度の大きさおよび磁場形状が調整可能である. 本研究においては、図2に示すとおり、なるべ く磁力線が加速チャンネル内において加速チャ ンネルと垂直になるように、外部コイル電流と 内部電流コイルの電流比を 1:1 に固定して行っ た. 半径方向の磁束密度はスラスタ出口で最大 になるように磁場形状を設計した. 径方向には 磁束は一定なので,磁束密度は加速チャンネル の内側壁面で最大となり外側に行くに従い減少 する.

推進剤にはキセノンを用いた. 陰極にはホ ローカソード(veeco 社製 HCES2)を使用した. 作動ガスにはキセノンを用い,作動ガス流量は 1.5 mg/s に固定した.

スラスタの作動実験は直径 5.0 m 長さ2 m の イオンエンジン耐久試験装置で行った. 真空ポ ンプの排気速度は空気で 4.4×10⁴ l/s(xenon)であ り,スラスタ作動時圧力は 5×10⁻³ Pa 以下であ った.

表1 5kW 級ホールスラスタ設計点

Power	Thrust	Isp	ṁ	η	V_d
6 kW	360 mN	1900 s	20 mg/s	0.60	300 V
17 kW	580 mN	3000 s	20 mg/s	0.55	800 V

図1 ホールスラスタ外観図

図2磁場形状分布,外部コイル4A,内部コイル4 A (Magnum 3.0 による数値解析)

図3 試験時の電気系統図

図3に電気系統図を示すが、カソードは真空 容器から浮かせて実験を行った.ただしチャン バとの電位差が40Vを超えると実験を停止し た.放電電圧が300V以上で40Vを超えたため、 これ以上の作動は行わなかった.また、3 Ωの 安定化抵抗を電源とホールスラスタの間に設置 したスラスタヘッドに流れる電流および印加す る電圧をデータロガーおよびオシロスコープを 用いて測定した. さらに推進性能を評価するために,振り子式スラストスタンドを用いて推力を算出した. この振り子式スラストスタンドの 誤差は5%であった.

3. 結果

スラスタを作動させ,性能を測定した.はじめ にサブチャンバで作動の確認実験および真空度 の影響を調査した後,性能評価のため,メイン チャンバにスラスタを直接設置し,推力および 温度変化を測定した.推力の測定よりカソード で消費するガスやカソード及びコイルで消費さ れる電力も加味して比推力および推進効率を算 出した.ただし,今回の作動条件において,カ ソードは安定作動を優先させたため,最適な条 件とは言えない.実際にカソードには 1.8 mg/s とアノード流量と比較して 1/4 も占めており, 適正値よりも大きかった.

$$Isp = \frac{F}{(\dot{m}_a + \dot{m}_c)}$$
$$\eta_t = \frac{F^2}{2(\dot{\mu}_a \sqrt{m_a VI} + \sum_{c} P_c + P_{c} + I_c)}$$

ここで、 I_{sp} , η_t , F, \dot{m}_a , \dot{m}_c , V_d , I_d , P_{coil} , $P_{cathode}$, は それぞれ、比推力、推進効率、推力、アノード 流量、カソード流量、放電電圧、放電電流、コ イルで消費する電力、カソードで消費する電力 (1.5 A×23 V=35 W)であった.

図 4 にホールスラスタに流すガスの流量を 6.8 mg/s に, ホローカソードに流すガスの流量を 1.8 mg/s に固定したときの推進性能を示す. この時の真空度は 3.2×10⁻³ Pa であった. 推力は放電 電圧と共に増加し, 放電電圧 300 V で 95 mN となった. このとき比推力は 1250 秒であった. 推 進効率は推力と同じく消費電力放電電圧と共に 増加している.

放電電圧を200 Vに固定して、磁場を変化さ せたときの推力、放電電流を図5に示す.コイ ル電流4Aまでは磁場の増加と共に、推力およ び放電電流ともに減少し、4Aを超えると、推 力はほぼ一定となる.コイル電流2.8Aで推力が 90 mNと大きくなっている.これは計測の誤差 範囲外であり、実際に推力が大きくなっている. このときは放電電流もそれなりに大きいが、結 果的に効率は30%を達成している.これはホロ ーアノード内で効率的にプラズマ生成が行えた ために性能が上がったと考える.

スラスタ作動時にプラズマの不均一性が見ら れた(図6参照). すなわち,図の右手側の加速 チャンネル内の発光強度のほうが左手よりも強いことが分かる.この不均一はスラスタにガスを供給する配管の途中でリークがあり空気がスラスタ本体の供給されていたためであり、再度実験した結果として、不均一性は改善され、推進性能も向上していた.¹⁰⁾

(b)

図 4 消費電力に対する推進性能(a)推力 vs.消 費電力(b)推進効率 vs.消費電力, アノードガス流 量 6.8 mg/s, カソードガス流量 1.5 mg/s

図 5 放電電流/推力 vs. 外部コイル電流(4 つ並 列), 推進材流量 6.8 mg/s 放電電圧 200 V

図6 作動中の様子

謝辞

本研究は宇宙航空研究開発機構宇宙科学研究 所「イオンエンジン耐久試験装置」を利用した ものです.ここに謝意を表します.実験遂行に 当たりご支援頂いた國中均先生に感謝致します.

参考文献

- J. A. Linnell, A.D. Gallimore, "Efficiency Analysis of a Hall thruster Operating with Krypton and Xenon," Journal of Propulsion and Power, Vol.22, pp. 1402-1418, 2006.
- S.Tverdokhlebov, A. Semenkin, and J. Polk, "Bismuth Propellant Option for Very High Power TAL Thruster," AIAA Paper 2002-0348, Jan. 2002.
- V. V. Zhurin, H. R. Kaufman, R. S. Robinson, "Physics of Closed Drift Thrusters,"Plasma Sources Sci. Technol. 8, 1999, R1-R20.
- E. Y. Choueiri, "Fundamental difference between the two Hall Thruster Variants," Phys. Plasmas, 8, 11, 2001.
- 5) Zharinov, A. V. and Popov, Yu. S., "Acceleration of Plasma by a Closed Hall Current," Soviet Physics-Technical Physics, Vol. 12, Aug. 1967, pp. 208-211.
- H. R. Kaufman, "Technology of Closed-Drift Thrusters," AIAA journal, Vol. 23, No. 1, 1985, pp.78-86.
- V. Kim, "Main physical feature and processes determining the performance of stationary plasma thrusters," Journal of Propulsion and Power, Vol. 14, No. 5, 1998, pp. 736–743.
- C. R. Koppel and D. Estublier, "The SMART-1 Electric Propulsion Subsystem,"AIAA-2003-4545, 39th Joint Propulsion Conference, Huntsville, Alabama, July 20–23, 2003.
- R. Myers, Overview of Major "U.S. Industrial Electric Propulsion Programs," AIAA-2004-3331, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, July 11-14, 2004
- N. Yamamoto, et al., "Thrust Performance in a 5 kW class anode layer type Hall thruster," IEPC2015 paper.