ラバール型磁気ノズル印加 MPD 推進機での電磁力評価

小林洋平, 鈴木清孝, 名渕弘晃, 小室淳史, 高橋和貴, 安藤晃 (東北大・工)

1. はじめに

MPD(Magneto-Plasma-Dynamic)推進機は,放電 電流とその自己誘起磁場により生じる電磁力をプ ラズマ加速に利用した電気推進機である.電気推 進機の中でも比較的推力密度が高く,大電力動作 が実現できる可能性があり,簡素な構造であらゆ る推進剤で動作可能という特徴を有するため,今 後の有人惑星探査ミッションにおける有力な候補 の一つである[1].しかしながら,大電流のアーク 放電により電極が損耗してしまうことや推進効率 が電気推進機の中でも低いといった問題点が指摘 されており,将来的な実用化に向けてこれらの課 題をいかに克服するかが重要である.

現在, MPD 推進機に外部から発散型磁場を印加す ることで, 印加した軸方向磁場により誘起される 周方向電流と, 軽方向磁場との相互作用によりス ワール加速やホール加速といった新たな電磁加速 機構が生じることが報告されている[2-5]. また, 周 方向電流により電極への電流集中が緩和され, 電 極損耗が大幅に軽減されることも確認されている [6]. MPD 推進機において外部印加磁場は, 推進性 能を決定する重要な要素の1つである.

これまで、外部印加磁場が MPD 推進機の推進性 能やプラズマ流に与える影響に関して様々な研究 が行われている[7-10].本研究室では、図 1 に示す ようなラバール型磁気ノズルに着目し、研究を行 っている.スラストターゲットによる推力計測よ りラバール型磁気ノズルを印加することで推力が 増加し,推進性能が大幅に改善されることを明らか にしている[11].また、分光計測では、ノズル下流部 で軸方向流速が増加することが明らかになり.こ の流速の増加により推進性能が向上したと考えら れる.しかしながら、ラバール型磁気ノズル中にお けるプラズマ流の詳細な加速過程の理解には至っ ておらず、磁気ノズル強度や印加位置といったパ ラメータの最適化も課題となっている.そこで本 研究では MPD 推進機のさらなる性能向上を目指し, ラバールノズルスロート部の磁場強度を変えた際 の軸方向流速と推力計測の結果より, ラバール型 磁気ノズルの強度・磁場分布の最適化を進めている. また, ノズル中での加速機構の解明に向け, MPD 推 進機の電磁加速機構に着目し,磁気プローブを用 いたプラズマ中の変動磁場計測から電流分布を見 積もり, その結果生じる電磁力を算出・評価したの で報告する.

2. 実験装置・方法

2.1. 実験装置

本研究は、図2に示す東北大学 HITOP 装置(High density TOhoku Plasma 装置)を用いて行った. HITOP装置は全長3.4m,内直径0.8mの真空容器,MPD 推進機,真空容器の周囲を取り囲む大小17個の磁場コイルから構成される.それらの磁場コイルに流す電流値を制御することで最大0.1Tの一様磁場を形成することが可能である.ここで,MPDス

author's e-mail:kobayashi.yohei@ecei.tohoku.ac.jp

ラスタの陰極先端を原点として流れ方向に Z 軸の 正方向を取り, 鉛直上方を Y 軸正方向として右手 系となるように座標軸を定義している.

真空容器の片端には MPD 推進機が設置されてい る.中心部の棒状陰極はタングステン製(外直径 1 cm),環状の陽極はモリブデン製(内直径 3 cm)であ る. 放電電流はパルス整形回路(*PFN*: Pulse Forming Network)により供給され,最大で 10kA ま での放電電流で約 1 msec の準定常動作が可能であ る.

MPD 推進機の陽極外側と下流部には発散型磁場 コイルとラバールノズル用磁場コイルを設置して いる.これら2つのソレノイドコイルの磁場を真空 容器の外部にあるコイル群で生成される一様磁場 (0.1 T)に重畳することで MPD 推進機出口近傍に図 1のようなラバール型磁気ノズル配置を形成するこ とができ、ラバールノズル用コイルに流す電流値 を制御することで、スロート部の磁場強度を制御 することが出来る.

2.2. 分光計測

本研究では MPD スラスタ出口近傍の窓に集光レ ンズを設置し, 光ファイバ, 分光器を通してプラズ マの発光スペクトルを取得した. 半径方向, および 斜め方向からスペクトル計測を行い, それらのド ップラーシフトから下記に示す方法で軸方向流速 の計測を行った. 今回は時間分解能が 0.1 msec., 波長分解能が 0.0081 nm/pixel の Czerny-Turner 型 可視領域分光器を実験に用いた. 測定波長は He II (468.575 nm)である.

次に、本研究で用いた発光分光法を用いた軸方向 流速の導出方法について述べる.軸方向流速 U と

5000 2000 $\theta = 0 \deg$ 4000 θ =20 deg. 1600 Intensity [a.u.] 3000 g 1200 Intensity 2000 800 1000 400 0 468.5 468.6 468.7 468.8 468.4 Wavelength [nm]

図 3 典型的なスペクトル波形とドップラー効果 による波長ずれ

は式(1)にように表される.

$$U = \frac{\Delta \lambda_D}{\lambda_m \sin \varphi} c \tag{1}$$

ここで、 $\Delta \lambda_D$ はドップラー効果による波長ずれ、 λ_m は測定波長、 φ はプラズマ流に対して垂直方向と斜 め方向の直線がなす角度、cは真空中の光速である. なお測定スペクトルはドップラー拡がりが支配的 であると仮定している、プラズマの発光スペクト ルからドップラー効果によるずれと半値幅をそれ ぞれ測定することによって、軸方向流速、回転流速 度、イオン温度を求めることができる.

図3 に典型的な測定スペクトルを示す. 赤丸がプ ラズマ流に対して垂直方向から取得したスペクト ルであり, 青四角がその垂直方向に対して20°だ け斜め方向から取得したスペクトルである. 両ス ペクトルにはドップラー効果によって図3のよう に波長ずれΔλ_Dが生じ, (1)式から流速Uが算出可能 である.

2.3. 推力測定

本研究では、推力の測定に円筒形のスラストター ゲットを用いた.スラストターゲットがプラズマ 流から受けるインパルスビットを I_{bit} ,放電持続時 間を Δt とすると、推力 Fは式(2)で表される.

$$F = \frac{I_{\text{bit}}}{At} \tag{2}$$

レーザー変位計を用いてスラストターゲットの変 位を計測することで、その変位からインパルスビ ット *I*_{bit}を導出することが出来る. 典型的なレーザ 一変位計の信号を図4に示す. 推力の算出には予め

図4 典型的なレーザー変位計の信号

図5 3 軸磁気プローブ

得たインパルスビットとターゲット変位の較正係 数を用いた.また,放電持続時間 Δt は放電電流波形 から見積もった値 Δt 1.49 =ms を用いた.

2.4.変動磁場計測

プラズマ中の変動磁場の計測には磁気プローブ を使用した.本実験では一回の放電で X 方向, Y 方向, Z 方向の変動磁場を一度に計測するため, 図5に示す3軸の磁気プローブを製作した.この 3 軸磁気プローブにより計測した変動磁場の分 布からプラズマ中の電流密度および電磁力が算 出できる.

2.5. 実験条件

本実験は全て推進剤に He を用い, 質量流量 38 mg/s, 放電電流 7.0 kA で行った. 実験に用いた磁 場配位を図 6 に示す. 前述の通りに, ラバールノズ ル用磁場コイルに流す電流値を制御することでラ バール型磁気ノズル強度B_{zL}を変更することが出来 る. 本実験ではB_{zL}=0, 0.10, 0.15, 0.20, 0.25 Tの5 つの磁場配位で実験を行った.

3. 実験結果

3.1. 推力測定結果

図7 推力のラバール型磁気ノズル強度依存

スラストターゲットを用いてラバール型磁気ノズ ル強度BzLを変化させた際の推力を測定した. 図 7 に推力のラバール型磁気ノズル強度依存を示 す.図7を見ると、ラバール型磁気ノズル強度 BzL=0.15 T 以下ではノズル強度の増加に従い, 推力が増加していることが分かる.しかしノズ ル強度BzLを 0.15 T 以上に強くしても、それ以上 推力が増加せず,およそ6.8Nで飽和する結果が 得られた.また、図8に各条件における投入電力 と推進効率のラバール型磁気ノズル強度依存を 示す.この投入電力は放電電圧と放電電流から 求められる放電電力に, 各条磁場配位を生成す る際にコイルで消費される電力を加味したもの である. 各コイルで消費される電力が放電電力 に比べて小さいため、図8に示すようにラバール 型磁気ノズル強度を変化させても,投入電力に はほぼ変化がない.得られた推力と投入電力か

ら算出される推進効率もB_{zL}=0.15 T 以上では増加せず,推進効率 44%で飽和する結果となった.

3.2. 分光計測結果

プラズマ流の軸方向流速の軸方向分布を図9に示 す.ここで図中のハッチング部分はラバールノズ ル用磁場コイルが設置されているため、分光計測 を行うことが出来ない領域である.図9を見ると、 ラバール型磁気ノズル強度B_{zL}=0Tではノズル下 流部で流速が変化しないのに対し、ラバール型磁 気ノズル強度がB_{zL}=0.10,0.15Tの場合には流速が ノズル下流部で徐々に増加することが明らかにな った.特にB_{zL}=0.15TではZ=200mmの位置で最 大64 km/sまで流速が増加している.ラバール型 磁気ノズル印加による流速の増加により推力が 増加したと考えられる.一方、ラバール型磁気ノ ズル強度をB_{zL}=0.20T以上にするとZ=160、200 mm の位置で流速がおよそ 50 km/s で一定となり, プラズマ流がこれ以上加速されていないことが示 された.

3.3. 電磁力計測結果

磁気プローブを用いてプラズマ中の変動磁場を計 測し, (2)式に示すアンペールの公式からプラズマ 中の電流密度を算出した.

$$\mu_0 \boldsymbol{j} = \operatorname{rot} \boldsymbol{B} \tag{2}$$

算出した電流密度と外部印加磁場および変動磁場 を用いて,(3)式より軸方向電磁力F_Zを算出した.

$$F_z = j_r B_\theta - j_\theta B_r \tag{3}$$

 B_{zL} =0, 0.15 T における軸方向電磁力 F_Z の 2 次元 分布を図 10 に示す. この結果を見ると B_{zL} =0 T では上流部, B_{zL} =0.15 T ではノズル下流部で強 く正方向の電磁力が生じていることが確認でき る. この正方向の電磁力によりプラズマ流が力 を受け,加速されていると考えられる. また,こ の軸方向電磁力の反力で磁力線およびコイルが 力を受け,推力の一部となるため,この軸方向 電磁力をプラズマの体積で積分することで電磁 力により発生される電磁推力 $F_{Lorentz}$ が算出でき る. Z=60-200 mm, r=35 mm のプラズマ円柱を仮

定し積分を行った結果, $B_{zL}=0$ T $\mathcal{C}F_{Lorentz}=1.0$ N, $B_{zL}=0.15$ T $\mathcal{C}F_{Lorentz}=1.1$ N となった. この結果 より $B_{zL}=0$ T $\mathcal{C}B_{zL}=0.15$ T \mathcal{C} は軸方向電磁力によ り生じる電磁推力の大きさは変化していない. 一方で,図7の推力計測の結果を見ると $B_{zL}=0.15$ T における推力は, $B_{zL}=0$ T における推力と比較 しておよそ 2.5 N ほど増加していることが分か る. 今回の電磁力計測の結果から考えると,この ラバール型磁気ノズル印加による推力増加は, $B_{zL}=0$ T \mathcal{C} 0.15 T \mathcal{C} 電磁推力の大きさが変わら ないことから,プラズマ圧力により生じる気体 力学的な推力が増加したのではないかと考えら れる. そのため,今後プラズマ密度とイオン温度 の計測を行い,プラズマ圧力に関する考察を進 める予定である.

4. まとめ

本論文ではラバール型磁気ノズルの最適化を行う ため,推力および軸方向流速のラバール型磁気ノ ズル強度依存を計測した.加えて,磁気ノズル中 の加速機構を解明するため,MPD 推進機近傍の電 磁加速機構を調査した.

ラバール型磁気ノズル強度を増加させるにつれ推 力の向上,軸方向流速の増加が確認された.しかし ながら,ラバール型磁気ノズル強度を 0.15 T 以上 にしても,推力が飽和してしまい,軸方向流速は Z=160-200 mm の位置では増加しないことが明ら かになった.この結果より,今回の実験条件ではラ バール型磁気ノズル強度は 0.15 T が最適であると 考えられる.

電磁力計測により, $B_{zL}=0$ T におけるノズル上流 部,および $B_{zL}=0.15$ T におけるノズル下流部にお いて,正の軸方向電磁力が生じていることが実 験的に確認された.この軸方向電磁力より,プラ ズマ流が加速されていると考えられる.またそ こから算出された電磁推力の大きさは $B_{zL}=0$ T, 0.15 T では変化ないことが確認された.

そのため、ラバール型磁気ノズル印加による推 力増加はプラズマ圧力による気体力学的な推力 の増加によるものだと考えられる.

5. 参考文献

- [1] D. Nakata *et al.*, 29th Int. Electric Propulsion Conf, Paper IEPC-2005-163 (2005)
- [2] H.Tahara *et al.*, 22nd Int. Electric Propulsion Conf, Paper IEPC-91-073 (1991)
- [3] A.Sasoh, Phys. Plasmas 1, 464 (1994)
- [4] Y. Izawa *et al.*, JPS Conf. Proc. 1, 015046 (2014)
- [5] K. Kubota *et al.*, The 44th Joint Propulsion Conference and Exhibit, AIAA 2008-4836, (2008)
- [6] H. Tahara et al., AIAA Paper, 28, 2554 (1990)
- [7] M. Inutake *et al.*, Plasma Phys. Control. Fusion 49 A121 (2007)
- [8] H. Tonari *et al.*, Phys. Plasmas **14**, 093507 (2007)
- [9] J. A. Walker *et al.*, 33rd Int. Electric Propulsion Conf, IEPC-2013-384, (2013)
- [10] R. Albertoni *et al.*, J. Propul. Power, **29**, 5, 1138-1145, (2013)
- [11] 鈴木 清孝 他, 平成 25 年度宇宙輸送シンポジ ウム (2014)