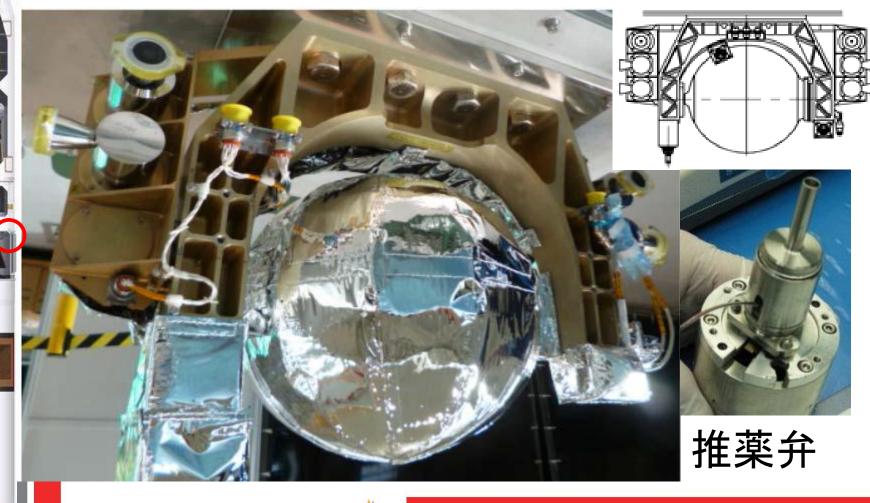
イプシロンロケット初号機 小型液体推進系の運用結果

宇井恭一、志田真樹、〇香河英史(JAXA) 長尾徹(IA)、古川克己、三島弘行(MHI) 2014年1月16日(木) 平成25年度宇宙輸送シンポジウム

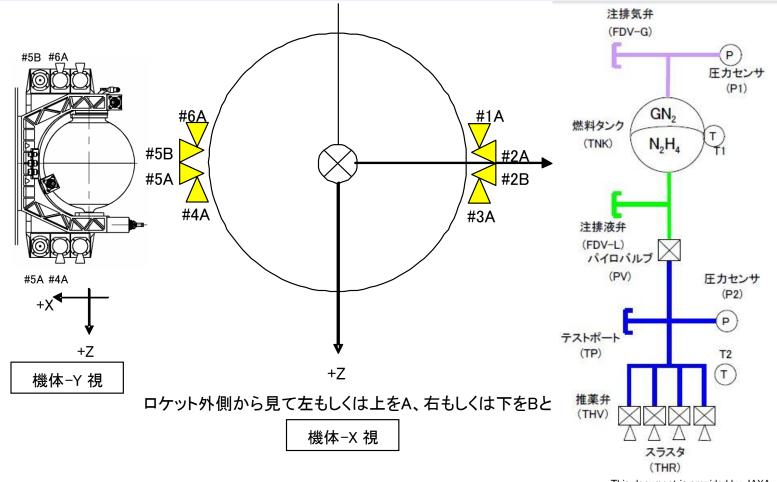
小型液体推進系とは

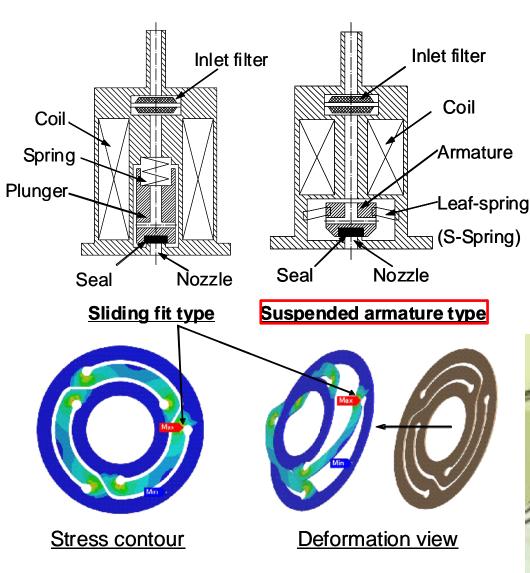

- イプシロンは、全段固体ですが2つの液体推進系を搭載
 - 2段リアクションコントロールシステム(2段RCS)
 - ポストブーストステージ(PBS,オプション)
- JAXA内では、液体推進WGを作って対応
 - イプシロンプロジェクト担当者
 - M-V/ISAS衛星の液体推進担当者
 - H-IIA/BのRCS担当者
 - 筑波衛星の液体推進担当者
- 製造企業は、RFPにて選定
 - 2段RCS:MHI
 - PBS:IA
 - ラムライン:IA(機体に付随する装置として未実施)

小型液体推進系仕様諸元

	2段搭載 RCS	PBS搭載推進系 (ポストブーストステージ) (オプション形態)	
機能系統	RCS	ラムライン制御	OMS/RCS
推進薬	ヒドラジン(一液式)		
推進薬供給	GN ₂ ス (フ゛ロータ)	GN₂加圧 (調圧式)	
推進薬量	約18kg	1kg以上	104.7kg
スラスタ基数	23N×6基 × 2モジュール	50N×1基	50N×8基
Wet質量	70kg以下	13.6kg以下	164.8kg以下
運用期間	1/2段分離 ~ 2/3段スピンアップ	3段スピン燃焼中	3段燃焼後 ~衛星分離 /軌道離脱

2段搭載RCS



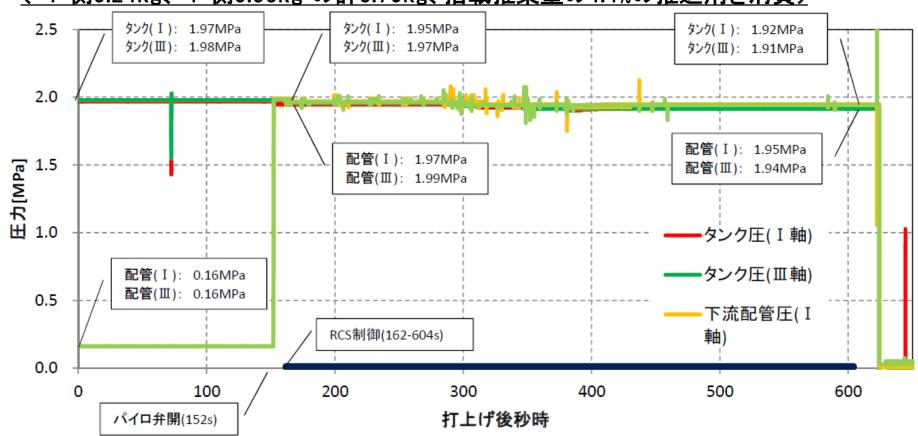


2段搭載RCS

- ・機体との着脱運用向上を狙った2つの独立モジュールを180度対向に艤装
- 新規開発要素: 推進薬タンク、搭載構造、推薬弁
- ・ 運用コスト低減策: 推進薬と加圧ガスを工場充填する ⇒ 射場作業簡素化

20N級推薬弁

- ・ 電気で励磁する電磁弁
- 擦るところがないタイプ
 - 構造的に固着を排除
 - サスペンディッドアマチュア
 - S-スプリング2本で懸架
 - シールは国際実績のAF-E411を採用


打ち上げまでの作業

- ・ 工場での作業
 - ヒドラジン充填
 - タンク加圧
- 工場~射場間輸送
- 射場での作業
 - ヒドラジン漏洩チェック
 - 圧力センサ出力確認
 - スラスタガスフロー
 - (推薬弁駆動)
 - ブランケット圧設定
 - (パイロ弁~推薬弁間 0.05MPaG)

- ・ 機体への取り付け
 - 推薬弁の動作チェック
 - 注排弁の閉止
 - パイロバルブ用着火火薬装着
- 打ち上げ当日
 - ステータスの確認
 - 温度データの監視

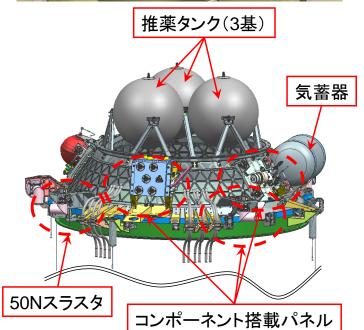
2段RCSの動作結果

- <u>・パイロバルブ動作:正常</u>下流圧が立ち上がり、過度なオーバシュートも無い
- ・ タンク圧力履歴: 正常 噴射に伴う圧力低下が計測されている
- 推進薬消費量: タンク充填量の約5%(推定,十分な余裕)
- ・スラスタ作動: バルブ作動回数及び作動時間は要求仕様の3%以下(十分な余裕)(+Y 側0.24kg、-Y 側0.55kg の計0.79kg、搭載推薬量の4.4%の推進剤を消費)

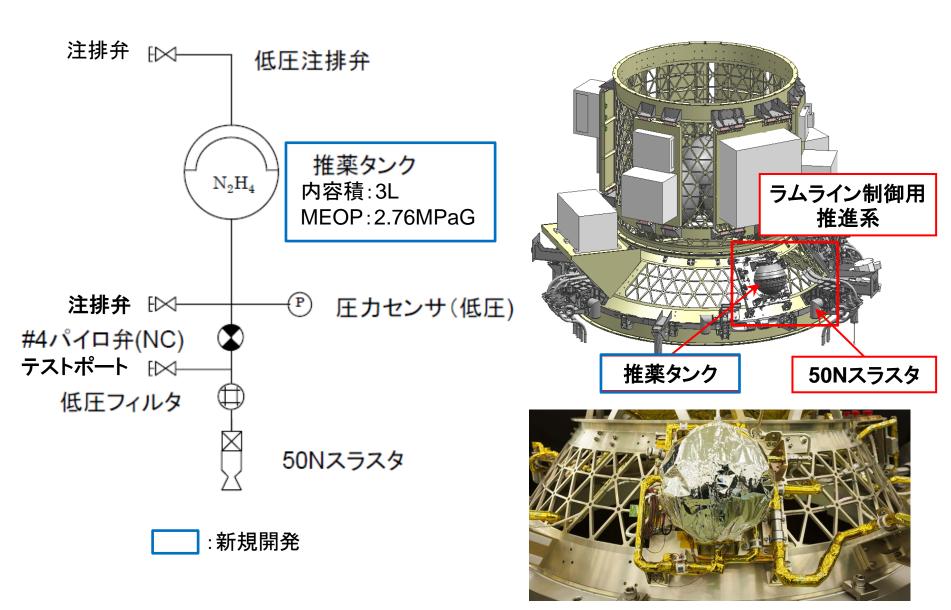
2段RCSスラスタ作動結果

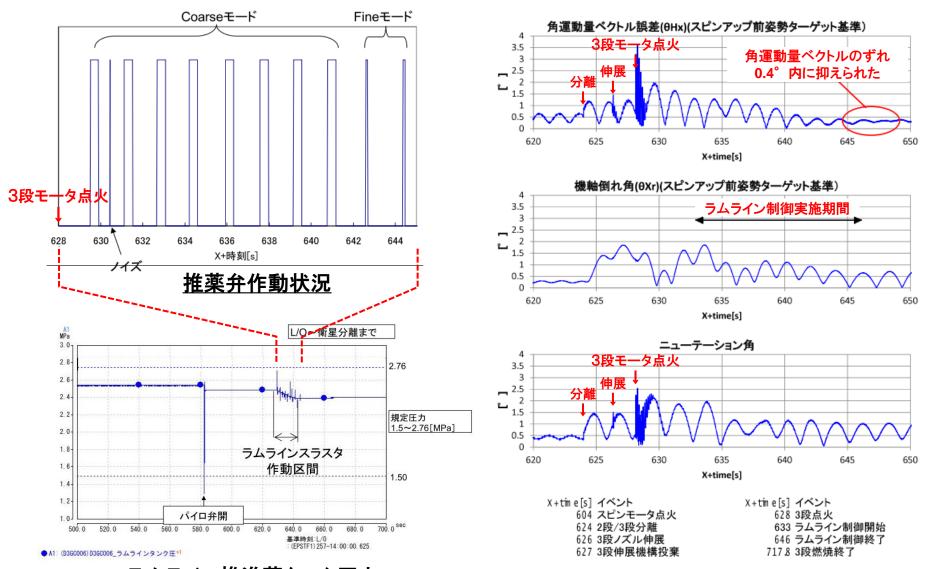
- ・ 最大10秒程度、合計67秒と非常に少ない作動であった。
- 研究開発本部にとっても20N推薬弁は初フライト!

	フェーズ	3軸制御 (1回目)	2段燃焼中ロール制御	3軸制御 (2回目)	積算
	時間	162~165s	165~259s	259~604s	= 8
3	1A	0.02	2.48	3.34	5.84
2.	2A	0	0	9.39	9.39
+Y	2B	0	0	9.39	9.39
	3A	0	2.02	3.80	5.81
	小計	0.02	4.50	25.92	30.44
88	4A	2.50	2.48	4.06	9.05
8:	5A	2.25	0	9.02	11.27
-Y	5B	2.25	0	9.02	11.27
	6A	0	2.05	3.06	5.11
	小計	7.00	4.53	25.16	36.69
	合計	7.02	9.03	51.08	67.13


PBS搭載推進系

PBS搭載推進系の仕様諸元

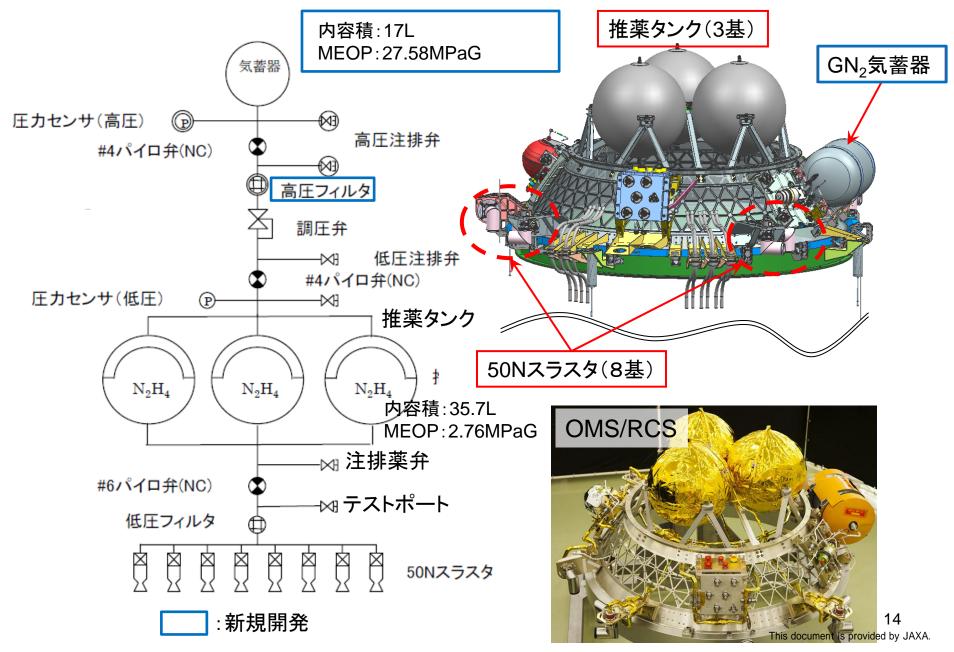

系 統	ラムライン制御	OMS/RCS	
推進薬	ヒドラジン(一液式)		
推進薬供給	ガス加圧 (ブローダウン式)	ガス加圧 (調圧式)	
推進薬量	1kg以上	83kg以上	
スラスタ基数	50N×1基	50N×8基	
Wet質量	13.6kg以下	164.8kg以下	
運用期間	3段燃焼中	3段燃焼後~衛星 分離·軌道離脱	



第3段ラムライン制御用推進系の概要

ラムライン制御試行結果

ラムライン制御系は10回作動→角運動量ベクトル誤差が閾値(O. 4°)内に収まった

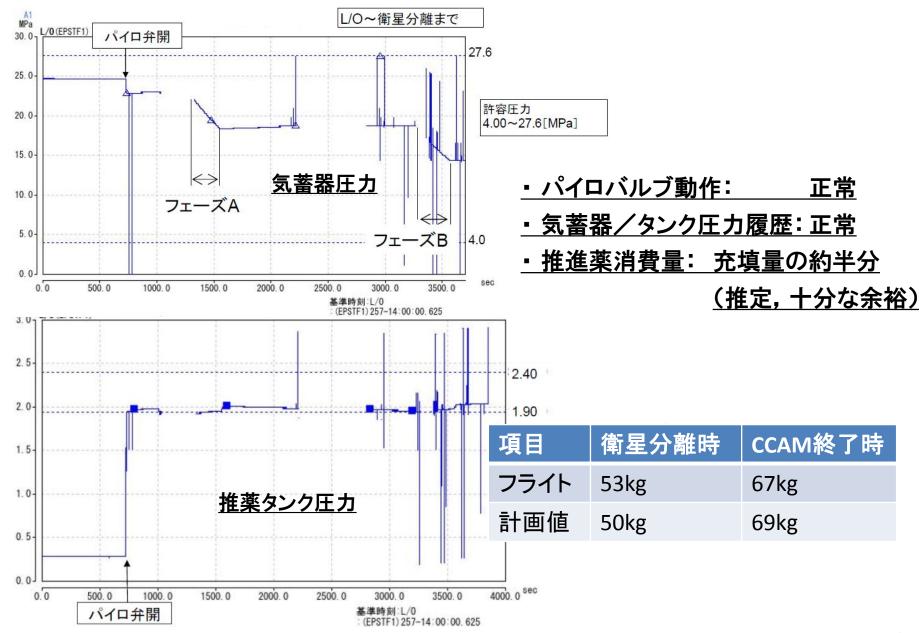

ラムライン推進薬タンク圧力

ラムライン作動実績

 ラムライン制御終了時までの消費推薬量は約
0.10kgであり、TF#1のラムライン有効推薬量0.285kg (NOM)の約35%を消費した。

	TF1フライト実績
Coarse mode (0.4sOn/1.67sec周期)	8回
Fine mode (0.1sOn/1.67sec周期)	2回

PBS搭載推進系(OMS/RCS)



打ち上げまでの作業

- 試験場での作業
 - ヒドラジン充填
 - タンク加圧
- 試験場~射場間輸送
- 射場での作業
 - 圧力センサ出力確認
 - ラムラインタンク加圧
 - スケープスーツ作業、2H
 - PBSガスタンク加圧(約 5H)
 - 調圧弁の機能確認

- 機体への取り付け
 - 推薬弁の動作チェック
 - 注排弁の閉止
 - パイロバルブ用火工品装着
- 打ち上げ当日
 - ステータスの確認
 - 温度データの監視
 - ヒーター電源のON

PBS搭載推進系OMS/RCSの動作結果

熱制御の結果

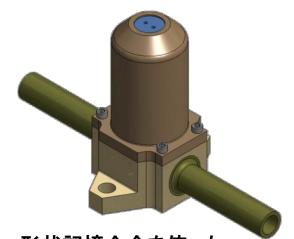
事前の解析結果と良く一致し、各部位の許容温度範囲の真ん中あたりで作動した。

		許容値	単位	結果
RCS	RCSガスジェットガスタンク壁温度(I 軸)	5~50	°C	23.3~24.1
	RCSガスジェットガスタンク壁温度(Ⅲ軸)	5~50	°C	23.3~25.1
	RCSガスジェット配管温度(I軸)	5~50	°C	24.7~29.7
	RCSガスジェット配管温度(III軸)	5~50	°C	24.7~30.4
	PBS気蓄器温度	<i>-</i> 54 ~ 60	°C	-1.2~24.2
	PBSガスジェットタンク壁温度	5~60	°C	30.1~34.3
	ラムラインタンク温度	5~60	°C	29.3~33.5
	PBS推薬弁温度	5 ~ 120	°C	25.1~53.6
	PBSパネル温度	5~60	°C	26.0~32.6

PBS推薬弁作動回数/累積作動時間

・ 計画値と良く一致して動作した。

スラスタ番号	作動回数 [pulse]	累積作動時間 [s]	作動モード
M1	942	565.5	P,Y,⊿V
M2	325	577.6	P,Y,⊿V
М3	291	592.1	P,Y,⊿V
M4	861	591.7	P,Y,⊿V
R1	229	15.2	R,P
R2	193	30.3	R,P
R3	240	14.5	R,P
R4	198	29.7	R,P
計	3279	2416.5	


	計画値	TF#1結果
最大作動回数[回]	1255	942

次号機に向けて

- 民生品の転用・工場充填等の低コスト策は、良好な結果
- RCS作動が少なく作動量推定精度が十分でなかった
 - 作動量にあった計測範囲への変更
- 射場の危険作業の更なる低減策の検討
 - 危険作業は、高圧ガスの充填、火工品のみ

- 火工品の削除により工数削減の可能性がある

形状記憶合金を使った パイロ弁代替品の採用

19

まとめ

- イプシロン初号機の液体推進系は、目論見通り、余裕をもった運用結果となった。
- 初号機のフライトで得られた成果,抽出された課題 を次号機以降の推進系の運用の効率化,輸送性能 の向上に役立てたい。
- 初フライトのコンポーネントの更なる利用を進めたい
 - 20N推薬弁
 - 市販品転用の気蓄器
 - ラムライン用推薬タンク