デュアルモード燃焼器内における炭化水素燃料燃焼時の状態量評価 Evaluation of Flow State in Dual-Mode Combustor with Combustion of Hydrocarbon Fuel

○鈴木 祐*1, 野島 清志*1, 副島 光洋*1, 富岡 定毅*2, 櫻中 登*2

*1 東北大学 大学院工学研究科 〒980-8579 仙台市青葉区荒巻字青葉 6-6-04 Tohoku University, 6-6-04 Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8579, JAPAN *2 宇宙航空研究開発機構 宇宙輸送ミッション本部 角田宇宙センター 〒981-1525 角田市君萱小金沢 1

Japan Aerospace Exploration Agency, STMD, Kakuda Space Center, Kakuda , Miyagi 981-1525, JAPAN

1. はじめに

次世代の宇宙輸送システムである宇宙往還機の実現へ 向け,ロケット複合サイクルエンジンが研究されている. 従来,その燃料の候補として有望視されてきた水素燃料は, 運用に伴うコストが大きいという深刻なデメリットをも っている.水素に代わる燃料として,現在炭化水素燃料が 着目されている.炭化水素燃料は,水素燃料に比べ,比推 力は劣る反面,常温で扱えることからコスト削減が望め, 密度が大きいため燃料タンクの縮小化も期待できる.しか し,炭化水素燃料の高速気流中での燃焼状態は未だ明らか になっていないことが多い.そこで,本研究では炭化水素 燃料を用いたエンジンの性能予測モデルに必要となる状 態量評価をすべく,エチレン燃焼実験と準一次元解析を行 った.以下にその結果を報告する.

2. 実験装置と計測

本実験は、燃焼加熱器(Vitiation Air Heater,以下 VAH) に直結した超音速風洞に、超音速ノズルおよびデュアルモ ード燃焼器供試体を接続させて行った.この供試体は、主 流方向へそれぞれ、618 mm、280 mm、635 mm の長さ をもつ分離部、平行部および拡大部からなる.流路断面は 矩形形状で、分離部および平行部は93.4 mm×51.0 mm の定断面、拡大部は半頂角 1.66 degree を有し、拡大部出 口において断面積は93.4 mm×87.8 mm となる.図1に 本供試体の概要図を示す.主流条件は、Mach 数 2.5、総 温 2000 K、総圧 1 MPa であり、燃料は室温まで加温した エチレンを用いた.燃料噴射は、平行部、拡大部に設置し た燃料噴射ブロックのうち,平行部のみから行った.平行 部に設置した燃料噴射ブロックは噴射孔径3mmを有す円 孔で,孔数は4孔であり,流路に対し垂直に燃料を音速に て噴射する.なお,燃料噴射孔下流にキャビティ(長さ50 mm,深さ15mm,後退角 30 degree)を設けている.ま た,本実験においては,燃料噴射を行う壁面をカウル,そ の対面を天板と定義し, xyz座標系は図1に示した通りに おく.

本実験の計測項目は、静圧分布、熱流束分布および拡大 部出口におけるガスサンプリングである.静圧分布は、分 離部,平行部,拡大部の流路中央に設けた孔径 0.5 mmの 壁圧孔から取得した. 計測には Pressure Systems 社製の PSI センサー(計測レンジ: 40 kPaA - 650 kPaA, 公称誤 差: ± 0.03%)を用いた.なお、サンプリング周波数 20 Hz である.熱流束値は、拡大部に設けた熱流束用ポートにて 計測した. データ計測には、VATELL 社製の伝導冷却熱流 東センサー(計測レンジ:0-5 MW/m², 0-10 MW/m², 公称誤差: ±1%)を用いた. この熱流束センサーはテスト セクション流路表面に面が合うように設置・固定してある. サンプリング周波数は 500 Hz である.本実験では、燃焼 器出口においてガス採取し、各ガス種のモル濃度を求めた. 分析化学種は、CO, CO₂, CH₄, C₂H₄, O₂, N₂, H₂であ る. なお、ガス採取用のプローブ(プローブ間隔 10 mm) は, 主流に正対させる形で設置し, サンプリングポイント は合計で45点である.また、このプローブからはピトー 圧も計測した. ピトー圧の計測値は各プローブにおける状

態量を算出する過程で用いた.

3 試験結果

本実験で当量比 0.30 のとき得られた静圧分布,熱流束 分布を図2に示す.まず静圧分布に着目する.なお、静圧 は、その試験気流総圧 Po:1 MPa で除して無次元化してい る. 定断面ダクトにおいて、その内部を流れる気流が熱的 にチョークを起こす静圧を P*とおくと、本気流条件にお いて、P*/P0=0.22である. 平行部において、静圧分布が この値を上回っているため、 ラムモード作動状態であると 判断できる.従って、燃料噴射孔上流付近の圧力上昇は、 主流が亜音速へ減速する際に生じる擬似衝撃波によるも のだと考えられる. 平行部下流にて亜音速回復した流れは, 熱閉塞状態を経て拡大部に入り再び超音速となり、燃焼器 出口へと加速する.次に熱流束分布に着目する.拡大部入 口および出口ではカウル側と天板側との熱流束値の差異 はほとんど見られないが、x = 0.1 m から 0.5 m にかけて はカウル側の方が高い熱流束値をもっていることがわか る.これは、拡大部における燃焼域がやや燃料噴射孔のあ るカウル側へ偏っていることを示していると考えられる. 図3a)~f)に各ガス種の出口断面モル濃度を示す.図に示 す濃度は,前項で示したガス種間での濃度であり,実際の 燃焼ガスには、水蒸気をはじめ、分析したガス種以外のガ スも含まれることに留意されたい.なお、CH4は検出され なかったため、図から省いている. a)の CO2のモル濃度 分布に着目すると、カウル側壁面付近で高い濃度を示して いることがわかる.このことから、燃焼域がカウル側へ偏 って燃焼器出口へ到達したものと考えられる. また c), d) から、C₂H₄が十分な量のO₂と反応できずにCOやH₂が 生じていることがわかる.

4. 準一次元解析

準一次元解析では、燃焼器を静圧ポート毎に区切り、ノ ズル出口を流入側の情報、各静圧ポートまでを検査体積と して保存式を解くという計算手法を用いた.解く保存式は、 質量保存式、運動量保存式、エンタルピー保存式である. なお、エンタルピーには、混合ガスがもつ化学エンタルピ ーも含めている.計算の入力情報は VAH から供給される 空気流、実験で計測した静圧分布である.この準一次元解 析においては、静圧分布を入力値とするため、その代わり の変数として、燃焼により消費される酸素の消費率を算出 する.そして、燃料を全量平衡計算に入れる代わりに、全 酸素の流量のうち、酸素の消費率を掛けた分のみを平衡計 算へ入れる.こうすることで、十分な量の O_2 と反応でき ずに生じる CO や H_2 を考慮できると考えられる.壁面か ら受ける摩擦力は、van Driest¹⁾の方法から求め、熱流束 分布はレイノルズのアナロジーにより算出した.

図4に準一次元解析と実験値の比較を示す.図より,実 験値が計算値の60%程度の値を示しているということが わかる.準一次元計算においては物理量が断面内均一仮定 しているため,発熱量が断面内で平均化されてしまう.従 って,計算値が実験値に対し過小評価となってしまうと考 えられる.故に,熱流束分布の予測精度を向上させるため には,断面内の不均一性を考慮しなければならないといえ る.そこで,断面内の不均一性を考慮するために,2流管 モデルを提案する.このモデルは,断面を仮想的に

流管1:燃料 + 空気(局所当量比1)

流管2:残りの空気

として与える.そして各流管で先述した3保存式を解く. このモデルでは,流管同士の質量の混合は考慮していない. また,運動量の輸送を流管同士の摩擦力で代表させ,熱の 輸送も考慮し,これらは Papamoschou の Ejector モデル で与える²⁰.2流管モデルを適用し,準一次元計算をし出 口断面平均モル濃度を比較したものを図5に示す.全体的 に傾向が良く一致しており,この2流管モデルは妥当なも のであると判断できる.

2流管モデルに加え、実験値ではカウル側と天板側の熱 流束値の差異を見積もるため、熱伝達率を求める過程にお いて用いるガス種に差異を与える.カウル側、天板側に 各々、

カウル側: 燃料 + 空気(局所当量比 1) 天板側: 空気

として与える.2流管モデルとこの仮定を用いて熱流束値 を計算した結果を,図6に示す.図より,カウル側,天板 側ともに実験値によく一致する計算結果が得られた.

5. まとめ

炭化水素燃料を用いたエンジンの性能予測に必要な状 態量評価するため,実験と準一次元解析を行った.準一次 元計算において、断面内の不均一性を考慮する必要がある. また、天板側、カウル側の熱流束値を予測するためには両 壁面付近のガス組成に差異を与える手段が有効である.

参考文献

1) E. R. Van Driest, "Turbulent boundary layer in

compressible fluids," Journal of Spacecraft and Rockets, Vol.40, No.6, (2003), pp. 1012-1028.

 Dimitri Papamoschou, Analysis of Partially Mixed Supersonic Ejector, Journal of Propulsion and Power, Vol.12, No.4, (1996), pp. 736-740.

Fig.1 デュアルモード供試体概要図

Fig.2 静圧および熱流束分布

Fig.3 a) CO₂ モル濃度分布

Fig.3 b) O₂モル濃度分布

Fig.3 c) CO モル濃度分布

Fig.3 d) H₂モル濃度分布

Fig.3 e) C₂H₄モル濃度分布

Fig.3 f) N₂モル濃度分布

Fig.6 モデルを適用した場合の熱流束分布の 見積もり

Fig.52流管モデルを適用させた場合の 出口断面平均モル濃度の実験値と 計算値の比較