マイクロ波放電式電子源のイオンスケール解析

Ion Scale Numerical Analysis of a Microwave Electron Source

○窪田健一,渡邊裕樹 (JAXA),山本直嗣,中島秀紀 (九大),宮坂武志 (岐阜大),船木一幸 (JAXA)

1はじめに

イオンエンジンは推進剤を放電によりプラズマ化し、 イオンを静電加速することにより推力を得る宇宙用推進 機である.低推力ゆえに所定の総力積を達成するために は数千から数万時間に及ぶ長時間の作動が要求されるが、 そのような長時間作動を保証するためには、実時間(数 万時間)をかけた寿命評価試験を実施する他ないのが現 状であり、これが新規開発・改良を遅延化させる一因と なっている[1].そのような状況に鑑み、近年は数値解析 によってイオンエンジンの寿命評価試験を支援する研究 が進められている[2].

加速電極の損耗解析に関しては多くの研究機関で研究 が行われてきたが,はやぶさミッションで寿命を制限し たマイクロ波放電式中和器に関しては[3],寿命どころか 内部現象についてすら十分に理解されているとは言い難 い.そこで本研究ではマイクロ波放電式中和器の内部現 象の解明,さらには耐久性の評価を可能とするプラズマ 解析ソルバの開発を進めている.本稿ではイオンの時間 スケールで解析するために,イオン・電子をそれぞれ粒 子・流体で扱う Hybrid-PIC (Particle In Cell)モデルを採用 し解析を実施した.開発したソルバの検証のために,マ イクロ波放電式中和器の特徴として挙げられる低電流モ ードと高電流モードの存在に着目し[4],それらが本ソル バで模擬できるか確認した.それぞれのモードにおける 放電場の違いについても十分に議論されていないため, 本研究にて明らかにすることを目的とする.

2 解析条件とモデリング

2.1 中和器形状

本稿では九州大学所有の試験モデルを解析対象とした. 図1に解析対象の中和器の断面図を示す.円筒状の筐体 内にL字型アンテナが挿入された構造を為す.作動ガス は図左上部から流入し,右端のオリフィスから流出する. 本計算では赤い枠で囲んだ領域を解析領域とした.磁場 は放電室周りに配置された永久磁石により印加され,図 2に示すような磁力線が放電室内に形成される.

2.2 Hybrid-PIC モデル

マイクロ波放電式中和器では、マイクロ波放電により 生成されたイオンが壁面に衝突し、電子と再結合して中 性粒子となり、その後再び放電室内で電離して同様の過 程を繰り返すというプロセスで電子が中和器本体から抽 出される.したがって、イオンが電荷の運び手として重 要な役割を果たしており、中和器の作動を模擬するため にはイオンの時間スケールで解析できるモデルを選択す る必要がある.作動ガスに関するクヌーセン数は1-10程 度であるため、イオンは粒子として扱うのが適切と考え られる.一方、電子についても ECR によるプラズマ生成 を模擬するためには、その粒子性まで考慮できるモデル 化が理想的である.しかし、電子の粒子性を考慮しつ つイオンの時間スケールで解析するには非常に高い計算 コストがかかる.

そこで本研究ではイオンは粒子,電子は流体として扱う Hybrid-PIC 法を適用した[5]. イオンの位置,速度は PIC 法により更新する.イオンと中性粒子の衝突として,弾性衝突及び荷電交換衝突を考慮した.弱電離プラズマであると考えられるため,中性粒子の流れ場は事前の DSMC 解析により求めた分布から不変であると仮定した.

イオン生成率算出には前進反応係数 k_f(T_e)を用いる方 法と Townsend 係数 a(E/n)を用いる方法が知られている. 前者は密度拡散が支配的な場合,後者は電場による電子 加速が支配的な場合に推奨される.中和器の場合,マイ クロ波プラズマに対して電圧をかけて電子を抽出するた め後者の影響は無視できず,両者を組み合わせて使用す るのが適切であると考えられる.本解析では以下のよう に各セルで両者を切り替えて適用した.

 $u_e \cdot E > 0$ (密度拡散が支配的) のとき

$$\rightarrow \dot{n}_i = k_f (T_e) n_n n_e \tag{1}$$

 $u_e \cdot E < 0$ (電場による電子加速が支配的)のとき

$$\rightarrow \dot{n}_i = \alpha (E/n_n) n_e |\boldsymbol{u}_e| \tag{2}$$

Townsend 係数の算出には Bolsig+を利用した[6]. なお,本解析では1価電離のみ考慮し,再結合は無視した.

電位は電流保存式及び電子に関する Drift-Diffusion モ デルから導出されるポアソン方程式を解くことで得られ, 電位から静電場を算出できる[5].磁場による非等方性に 起因する計算の不安定性を避けるために,本解析では直 接法により同方程式を解いた.Drift-Diffusion モデルでは 電子の移動度を与える必要があるが,電子の衝突周波数 の評価においてイオン音波不安定性に起因する異常抵抗 モデルを用いた[7,8].

$$v_{eh} = v_{en} + v_{ei} + v_{anm} \tag{3}$$

ただし,

$$v_{anm} = 10^{-2} \omega_{p,i} \frac{|\boldsymbol{u}_e|}{a_i} \frac{T_e}{T_i}$$
(4)

ここで、*ω_{p,i}*, *a_i*はそれぞれイオンプラズマ振動数,イオ ン音波速度を表す.イオン温度 *T_i*はイオン粒子の位置, 速度から統計的に算出した値を用いた.同モデルはホロ ーカソード解析で適用されていたものであるが,マイク ロ波放電式中和器においてもイオン音波に起因する雑音 が計測されており[9],本研究においても同モデルの適用 は妥当と言える.

電子温度は電子エネルギー保存式を解くことで与えら れる.イオン粒子を1ステップ時間更新する毎に,同じ 時間だけ電子エネルギー保存式を時間発展させることで, 最終的に定常解を得ることができる.

$$\frac{\partial}{\partial t} \frac{3}{2} n_e k T_e + \nabla \cdot \left(\frac{5}{2} n_e k T_e \boldsymbol{u}_e + \boldsymbol{q}_e \right)$$

$$= \boldsymbol{j}_e \cdot \boldsymbol{E} - \boldsymbol{Q}_{ion} - \boldsymbol{Q}_{exc} - \boldsymbol{Q}_{els} + \boldsymbol{P}_{abs}$$
(5)

ここで, *q*_e, *Q*_{ion}, *Q*_{exc}, *Q*_{els}, *P*_{abs}はそれぞれ熱流束,電離損 失,励起損失,弾性衝突損失,マイクロ波吸収量を表す. 熱流束の評価の際には非等方性を考慮した熱伝導係数を 用いた[10].

ECR 放電は九州大学で開発が進められてきた FDTD (Finite Difference Time Domain)と電子 PIC のカップリン グソルバを用いて解析した[11]. 同ソルバにより各セル でのマイクロ波吸収量を計算し,それを Hybrid-PIC に反 映させるという手法を用いた.マイクロ波吸収量はセル 内での電子の運動エネルギー変化から算出した.

$$P_{abs} = \frac{1}{V_{cell}} \frac{d}{dt} \sum_{j \in cell} \frac{m_e v_{e,j}^2}{2}$$
(6)

2.3 境界条件

イオンは壁面に到達すると電子と再結合して消滅する と仮定する.電子に関してはシース電位を乗り越えられ るものだけが壁面に到達するため,壁面への電子流束は 以下の式で与えられる.

$$n_e \boldsymbol{u}_e \cdot \boldsymbol{n} = \frac{1}{4} n_e C_e \exp\left(-\frac{eV_{sh}}{kT_e}\right)$$
(7)

ここで, n, C_e, V_{sh} はそれぞれ壁面での法線ベクトル, 電子熱速度,シース電位を表す.電位に関するポアソン 方程式を解く際に上記条件を課すことで,シース存在下 での電子流束を模擬することができる.本解析ではオリ フィス下流 4 mm の位置(図 1 の Virtual anode)において 電位を与えることで電子抽出を模擬することとする.プ ルーム領域における雰囲気ガスとの境界では電子流束は ゼロと仮定した.一方,シース存在下での電子熱流束は 以下の式で評価した[12].

$$q_e = \frac{1}{4} n_e C_e \exp\left(-\frac{eV_{sh}}{kT_e}\right) (2kT_e + eV_{sh})$$
(8)

Virtual anode 上における電子温度は上流から外挿することで与え、雰囲気ガスとの境界では断熱条件を課した. 2.4 計算条件

本解析で使用した格子を図3に示す.青色で示したセ ルが流体セルに相当し,その他は壁面セルを表す.本稿 では中和器の中心軸をx軸とし,L字アンテナの先端が 指す方向を+y軸方向とする.円筒である中和器形状を 図に示すような直方体格子で近似した.格子幅は0.5 mm である.バックヨークのアンテナ周りの形状は直方体格 子での模擬は困難であるため、図3に示すように円筒形 状に置換した.

解析条件を表1に示す.本稿では Virtual anode の電位 (*V_{va}*)として14,28 Vの2ケースを示す.後述するオリフ ィス下流4 mm 位置におけるプローブ計測によれば,そ れぞれの電位値は低電流モード,高電流モードでの空間 電位に相当することが予測されている.プルーム領域で は雰囲気ガスからのイオン流入を考慮するために密度下 限値を設定した.条件は異なるが,過去に小野寺らによ って計測された中和器出口の密度は 1.38×10¹⁷ m⁻³ 程度 であり,本中和器でも同程度であると仮定した[13].

X 1 ///////		
作動気体	Xe	
流量	0.5 sccm	
マイクロ波周波数	2.45 GHz	
投入電力	8 W	
密度下限值	1E+17 m ⁻³	
Virtual anode 電位	14. 28 V	

表1 解析条件

3結果と考察

3.1 電流電圧特性

 V_{va} =14,28V がそれぞれ低電流モード,高電流モードに 対応しているかどうか確認するために,電流電圧特性を 表2に示す.実験によって計測されたオリフィス下流 4 mm 位置における空間電位とその時の電流値も比較のた めに示した.解析結果によれば, V_{va} =14,28V の間で大 きく電流値が増加しており,それぞれが低電流モード, 高電流モードに対応することがわかる.ただし,高電流 モードでは50 mA 程度過大に評価しており,今後モデル を改良する必要がある.高電流モードでは電子加速に起 因するイオン生成が支配的であると予想されることから, 式(2)で表されるイオン生成率評価に改良の余地がある と予想される.本解析では式(2)で全電場・全電子速度を 用いたが,実際には磁場に垂直な方向には電子加速が起 きづらいため,それらの効果を取り込むことで,より実 験値に近づくものと考えられる.

表2 電流電圧特性

		空間電位 (V)	電流(mA)
低電流	実験	14.1	18.5
モード	解析	14	20.1
高電流	実験	27.8	130.3
モード	解析	28	179.8

3.2 電位分布

図4に電位分布を示す. V_{va}=14Vのときは電位のピー ク(20V程度)はアンテナとオリフィス入口の間に存在 し、電位はそこからオリフィス出口に向かい減少する. したがって、電子は電場に逆らってオリフィスから放出 されることとなるため,オリフィス内では密度拡散が支 配的であると考えられる.小野寺らの測定によればアン テナ周りの電位は20V程度であり、測定と作動条件は異 なるものの計算結果の妥当性を支持する測定結果と言え る[13]. 図中にはイオン流線も示しており、イオンが電 位のピーク領域から電位勾配に従って周囲に散逸する様 子がわかる. 電子源内部のイオンラーマー半径は 5 mm 前後であるが、電位勾配の影響により顕著なラーマー運 動は見られなかった.一方, $V_{va} = 28 V$ のとき,電位はプ ルーム領域でピークを持ち、電子源内部に向かって単調 減少する. したがって, 電子はオリフィス内で下流に向 かって加速され、エネルギーを得た電子によりオリフィ ス内部において電離が促進されると予想される. イオン 流線から、オリフィス内部で生成されたイオンは、一部 は壁面にて消失し、一部は上流向きの電場によって上流 に向かい加速を受け、電子源内部に流入することがわか る.

3.3 密度分布

図5に密度分布を示す. $V_{va} = 14 V のとき, 図 4-(a) に$ 見られた電位のピーク領域ではイオンが排斥される影響で密度が低く,その周囲で高密度領域が形成される.オ $リフィス内では上流側から出口に向けて <math>6.5 \times 10^{17}$ m⁻³ か ら 1.3×10^{17} m⁻³ まで減少した.一方, $V_{va} = 28 V$ ではオリ フィス内で 6.5×10^{17} m⁻³ から 1.6×10^{17} m⁻³ の密度が維持 されている.これは先述の通り,オリフィス内における 電子加速により電離が促進されることに起因する.また, オリフィス上流端から上流に向かって高密度領域が伸び ており,これも図 4-(b)に見られる電位勾配によって加速 された電子による電離によるものと考えられる.ただし, 先述の通りイオン生成率の過大評価が懸念されるため, 密度についても過大評価している可能性が高く,今後検

討が必要である.

3.4 エネルギーバランス

図 6 にエネルギーバランスを示す.内訳は壁面損失 (Wall loss), 陽極損失(Anode loss), 電離(ionization), 励起 (excitation), 電子が静電場から受ける仕事(JE)である. こ こで,陽極損失は Virtual anode への熱流束を表す.また, 静電場による仕事は直流電力による仕事に相当し、電子 が静電場から正味得た仕事が負の場合は損失として計上 し、正の場合は入力電力としてマイクロ波電力に加算す る必要がある. $V_{va} = 14 V$ では JE < 0 であったため損失と して図中に示した.JE < 0 は電子が電場に逆らって移動 すること意味し、先述の通り密度拡散が支配的であるこ とを示唆している.ただし、実験などで測定される直流 成分の入力電力は正であり,本稿のJEとは区別する必要 がある.実験で測定される直流電力を求めるにはシース 領域における消費電力を考慮する必要があるが本稿では 議論しない. エネルギー損失の割合としては励起損失が 支配的であることがわかる.

一方、V_{va}=28 V では JE > 0 であり、その値は 1.4W で あったため、シース領域を除くバルクプラズマへの入力 電力はマイクロ波電力と合わせて 9.4 W であった. 電離 が促進されたため電離による損失が大幅に増加し、さら にオリフィスからプルーム領域にかけての密度増加に起 因して陽極損失も増加した. 壁面損失の割合が減少した が、これはシース電位が上昇したことで電子の流入量そ のものが減少したためと考えられる.

4まとめ

マイクロ波放電式電子源をイオンの時間・空間スケー ルで解析するために3次元 Hybrid-PIC ソルバを開発し, 低電流モードと高電流モードそれぞれの放電モードを模 擬した.マイクロ波吸収量は電子 PIC ツールにより事前 評価しておき,それを Hybrid-PIC で使用した.これまで 実装できていなかった電子エネルギー保存式を解くこと でエネルギーバランスなどの議論が可能となった.電離 反応では1価イオンのみ考慮した.

(a) $V_{va} = 14$ V (Input: 8W)

下流4 mm 位置において 14,28 V の電位を与えると, 放電電流はそれぞれ 20.1,179.8 mA となり,それぞれが 低電流・高電流モードを模擬できていると考えられる. ただし,実験値と比較すると高電流モードでは 50 mA 程 度過大評価しており,今後モデルの改良が望まれる.高 電流モードでは電子源内部からオリフィス出口に向かい 電位が上昇するため,電場によって加速された電子によ る電離がイオン生成率の増加に寄与している.ただし, エネルギーバランスの観点から見れば,電離よりも励起 が支配的であることがわかった.

参考文献

1. H. Kuninaka, I. Funaki., K. Nishiyama, Y. Shimizu and K. Toki. "Result of 18,000-hour Endurance Test on Microwave Discharge ion Thruster Engineering Model," AIAA-2000-3276, 2000.

 M. Nakano, "Three-dimensional simulations of grid erosion in ion engines," *Vacuum*, Vol. 83, No. 1, 2008, pp. 82-85.
 細田聡史, 國中均, "イオンエンジンによる小惑星探査 機「はやぶさ」の帰還運用," J. Plasma Fusion Res., Vol. 86, No. 5, 2010, pp. 282-292.

4. I. Funaki., H. Kuninaka, "Overdense Plasma Production in a Low-power Microwave Discharge Electron Source," *Jpn. J. Appl. Phys.*, Vol. 40, 2001, pp. 2495-2500.

5. K. Kubota, H. Watanabe., I. Funaki, N. Yamamoto, H. Nakashima, and T. Miyasaka. "Three-dimensional Hybrid-PIC Simulation of Microwave Neutralizer," IEPC-2013-098, 2013.

6. G. J. M. Hagelaar, and L. C. Pitchford, "Slving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models," *Plasma Sources Sci. Technol.*, Vol. 14, 2005, pp. 722-733.

7. I. G. Mikellides, D. M. Goebel, B. A. Johns, J. E. Polk, and P. Guerrero, "Numerical Simulations of the Partially-ionized Gas in a 100-A LaB6 Hollow Cathode," IEPC-2013-142, 2013.

8. P. Petkaki and M. P. Freeman, "Nonlinear Dependence of Anomalous Ion-acoustic Resistivity on Electron Drift Velocity," *The Astrophysical Journal*, Vol. 686, 2008, pp. 686-693.

9. 西山和孝, 清水幸夫, 船木一幸, 國中均, 都木恭一郎, "マイクロ波放電型中和器とホローカソードからの電磁 雑音,"日本航空宇宙学会論文集, Vol. 49, No. 566, 2001, pp. 84-91.

10. G. J. M. Hagelaar, K. Makasheva, L. Garrigues, and J. P. Boeuf, "Modelling of a dipolar microwave plasma sustained by electron cyclotron resonance", Journal of Physics D: Applied Physics, Vol. 42, No. 19, 2009.

11. H. Masui, Y. Tashiro., N. Yamamoto, H. Nakashima and I. Funaki, "Analysis of Electron and Microwave Behavior in Microwave Discharge Neutralizer," *Trans. Japan Soc. Aero. Space Sci.* Vol. 49, No. 164, 2006, pp. 87-93.

12. D. M. Goebel and Ira Katz, *Fundamentals of Electric Propulsion: Ion and Hall Thrusters*, Wiley, 2008.

13. 小野寺範義,竹ケ原春貴,西山和孝,船木一幸,國 中均, "マイクロ波放電型中和器の電子放出機構,"日本 航空宇宙学会論文集, Vol. 49, No. 564, 2001, pp. 27-31.