無電極ヘリコンスラスタにおける推力計測実験

○外岡学志(総研大),船木一幸,松岡健之(ISAS/JAXA) 岩渕頌太,中村隆宏,篠原俊二朗,西田浩之(東京農工大)

Key Words: Electrodeless Electric Propulsion, Helicon Plasma Source, Lissajous Acceleration, Thrust Measurement

1.緒言

大規模軌道間輸送や有人火星探査などの将来の宇宙ミ ッションにおいて、大電力を用いた高推力で長寿命な電 気推進が求められる.しかし、従来の多くの電気推進機 において、プラズマ化した推進剤を加速させる電極が、 プラズマと直接接触することで損耗やコンタミネーショ ンを起こし、推進システム全体の寿命・性能を大きく制 限してしまう問題がある.この問題を解決する方法の一 つとして、プラズマの生成および加速の全過程をプラズ マと電極の直接接触なしで行う「無電極電気推進機」が 提案されている.本研究では、完全無電極な電磁加速型 のプラズマスラスタの実現を目指し、HEAT (Helicon Electrodeless Advanced Thruster)プロジェクトを組織し、研 究を進めている^[1]. Fig.1 に、我々の提案しているコンセ プトの一つである、回転電界を用いたリサージュ加速型 ヘリコンプラズマスラスタの概略図を示す.

スラスタの赤破線で示したプラズマ生成部では、永久 磁石と高周波アンテナを用いたヘリコンプラズマ源を用 いて、高密度プラズマを生成する. ヘリコンプラズマ源 とは,磁場と高周波を用いた無電極プラズマ生成方法の -つであり、高電離(>10%)で高密度(~1019m-3)の プラズマを、kW レベルの高周波を印加することで比較的 容易に得ることが出来る. プラズマが生成されると,発 散磁場によってプラズマは加速排気され、石英管端面に 熱推力が,永久磁石に電磁推力がそれぞれ与えられる. 青破線で示したプラズマ加速部では、2 組の平行平板アン テナに位相をずらした高周波電圧をかけ、プラズマ内部 に回転電界を印加する.軸方向磁場と回転電界によって 電子のみを ExB ドリフトにより旋回運動させ、重ね合わ せにより周方向の電流を誘起させる.周方向電流と径方 向磁場とのローレンツ力によってプラズマを電磁気的に 加速(リサージュ加速)させる.

Fig. 1 Concept of electrodeless plasma thruster.

これまでの研究では、スラスタの実験室モデルにおい てプラズマ計測および推力計測が行われてきた^[2,3].本研 究では、スラスタ実験室モデルの推進性能の評価、回転 電界印加によるプラズマの電磁加速(リサージュ加速) の実証を目指し、そのための.本研究では2種類の異な るスラスタ径において、スラストスタンドを用いて各実 験条件で推力測定を行った.プラズマ源の推力直接計測 を行い、推進特性の外部パラメータ依存性を明らかにし た.

2.実験装置

2.1 スラスタ実験室モデル

スラスタの寸法・構成部品の位置関係概略図を Fig.2 に 示す.スラスタは石英管,2 種類のアンテナおよび磁気回 路から構成される.石英管を囲うように2 組のネオジム 磁石を8 枚設置する(Fig.2(a)(b))ことで,プラズマ生成部 ではほぼ一様な形状な軸方向磁場を,スラスタ出口では 発散磁場をそれぞれ形成するよう設計されている(Fig.2(c)). また,2 種類のアンテナはスラスタとは非接触で設置され ている.

高周波電源系の概略図を Fig.3 に示す.シグナルジェネ レータから発振された 9.5MHz の高周波は、パルスモジュ レータで約 200ms の矩形パルスとなり、増幅器・整合器 を経てインピーダンスマッチングを取ったのち、生成用 アンテナ(ダブルループアンテナ)に印加される.一方、 パルスモジュレータからの信号に同期して、シンセサイ ザーより位相を調整した 13.56MHz の高周波が印加され、 増幅器・整合器を経て加速用アンテナ(平行平板アンテ ナ)に印加される.本実験は、ラズマソースのみでの推 力計測実験であるため、加速用アンテナには電力を投入 しない.

Fig.2 Thruster configuration (a) Side view and (b) Front view. (c) Schematic of magnetic field ^[4].

Fig. 3 RF system setup.

2.1 スラストスタンド

推力計測は、Fig.3 に示すねじり振り子を利用した微小推 力計測装置(以下スラストスタンド)を用いて行った. スラストスタンドはベース、アーム、トーションスプリ ング、カウンタウエイトおよび変位センサから構成され る.アーム両端にそれぞれスラスタの一部、カウンタウ エイトが載っており、カウンタウエイトの変位をレーザ 一変位センサで計測する.スラスト構成部品である生成 アンテナと加速アンテナはスラストスタンドに非接触で、 石英管と磁気回路のみがアームに搭載されている.よっ て、本スラストスタンドで測定できる推力は、熱推力と 電磁推力の和となる.スなお、スラストスタンドの校正 には、小鉄球の非弾性衝突によって行った.既知のイン パルスを与えることで、スタンドの最大変位とインパル スの関係を取得し、計算からスラストスタンドの変位と 推力の変換係数を得る.

Fig.4 (a)Schematicof thrust stand (b)Experimental setup of thrust measurement.

実験条件を Table1 に示す.2 種類の異なるスラスタ径 (50 mm, 100 mm)において、スラストスタンドを用い て各実験条件で推力測定を行った.プラズマ生成アンテ ナへの投入パワーおよびガス流量を変化させ実験を行っ た.熱的な問題および高周波放電時にセンサ信号が拾う ノイズの問題からパルス運転(~200 ms)を行う.

Table 1. Experimental condition.

Quartz Tube Dimensions	I.D. 50 mm	I.D. 100 mm,
	length 50 mm	Length, 100 mm
RF Frequency	9.5 MHz	9.5 MHz
Input Power: P _{in}	0.1-2.1 kW	0.8-1.9 kW
Duration of RF Pulse	~200 ms	~200 ms
Chamber Pressure Before	< 6×10-3 Pa	<2×10-2 Pa
Discharge at Ar Flow of 0.89 mg/s		
Gas mass flow	10~70 sccm	20~70 sccm

3.実験結果

Table2 に実験結果を示す.スラスタサイズ 50mm および 100mm について,推力・比推力・効率の最大値をまとめたもので,それぞれで推進性能の向上が見られる.100 mm では 50mm の場合に対し,推力は 2.4 倍,比推力は 2.2 倍となっている.また,スラスタサイズ 100mm において,投入電力 0.8kW で効率が最大値 4.5 %を計測した.

Table 2. Experimental results.

	I.D. 50 mm	I.D. 100mm
	w/o acceleration	w/o acceleration
Input power	<2.0 kW	<1.7kW
Max thrust	$4.7 \pm 0.12 \mathrm{mN}$	$11 \pm 0.66 \mathrm{mN}$
Max specific impulse	$3.7 \times 102 \pm 4.9s$	$8.4 imes102\pm33s$
Max Efficiency	$0.3 \pm 0.03\%$	$4.2 \pm 0.2\%$

推進性能が向上した理由として次の点が考えられる. 1)磁気回路中の石英管内部空間が拡大したためにプラズ マ中の磁場勾配および体積当たりの壁表面積が増加し, 壁損失が低減した.

2) プラズマと磁気回路の接近したことで、プラズマ中の 径方向磁場が増加し、電磁推力が増加した.

4.結論

本研究では、リサージュ加速型へリコンプラズマスラ スタの推進性能の評価およびリサージュ加速の実証を目 標とし、スラスタ実験室モデルの推力特性を明らかにす るための初期実験として、スラストスタンドを用いてプ ラズマ源のみでの推力計測を行った結果、以下の知見を 得た.

- 2種の異なるスラスタ径で推力計測を行い、スラス タ実験室モデルの推進性能を得ると共に、スラスタ サイズによる推力性能の向上を確認した。
- スラスタサイズ 100mm の場合について,最大推力 11 mN,最大比推力 470 s が得られ,それぞれスラス タサイズ 50mm の場合に対し 2.4 倍 2.2 倍となった. また,最大効率 4.5%が得られた.

今後,プラズマ加速アンテナに電力印加時の推力計測 を行い,リサージュ加速の実証を目指す.

謝辞

本研究は、科学研究費補助金[(S)21226019]の援助により なされました.また宇宙航空研究開発機構宇宙科学研究 所スペースプラズマ共同利用設備にて実験が行われました.

参考文献

¹K. Toki, S. Shinohara, T. Tanikawa, I. Funaki and K. P. Shamrai, IEPC 03-0168, Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France, 17-21 March, 2003.

²T. Matsuoka, I. Funaki, K.P. Shamurai, S. Satoh, T. Fujino, S. Iwabuchi, T. Nakamura, H. Nishida, S. Shinohara, T. Hada, and T. Tanikawa, Laboratory Model Development of Electrodeless Helicon Plasma Thruster Using Permanent Magnet, IEEE Transaction on Plasma Science, submitted.

³T. Nakamura, H. Nishida, S. Shinohara, I. Funaki, T. Tanikawa, S. Iwabuchi, T. Hada, Experimental Investigation of Thrust Characteristics in Lissajous Acceleration Type Electrodeless Helicon Plasma Thruster, 29th ISTS, 2013-o-1-08, Nagoya,June 2-9, 2013.

⁴K. Takahashi *et al., Plasma Sources Sci. Technol.* 19,025004 ,2010.