ターゲット型スラストスタンドを用いた完全無電極 ヘリコンプラズマスラスタにおける推力計測

桑原 大介, 篠原 俊二郎(東京農工大·工) 小山 祐史, 大塚 修平, 石井 隆路, 石井 大樹, 勅使河原 直人, 藤墳 弘昌, 早稲田 真平(東京農工大·工·院)

1. 背景

電気推進機はその高い比推力から深宇宙探査など の長期ミッション宇宙機用推進機として不可欠であり、 効率改善や大推力化の研究が進められている。しかし ながら、現在実用されている電気推進機、ホールスラス タ、イオンエンジン、MPD スラスタ等はプラズマとの接 触による加速電極の損耗による使用時間制限が今後 の長寿命化・大推力化への妨げになっている。この問 題を本質的に解決するには加速電極等のプラズマと 接触する電極を除去することが挙げられる。本研究室 ではこの問題の解決のためにプラズマ生成・加速の両 方で非接触電極を用いるヘリコンプラズマスラスタ^[1,2]を 提案し、これの実用化のための研究を行っている。

2. 目的

提案しているヘリコンプラズマスラスタの原理は下記

の通りである。プラズマは燃料ガス・磁場を供給した石 英管外から高周波電力をアンテナを通して石英管内 に印加し高密度ヘリコンプラズマを生成する。生成され た高密度プラズマは密度勾配や磁気ノズルが形成す る磁場勾配による力により加速されるが、本方式では 非接触アンテナによる電磁加速を用いて更にプラズマ を加速して排気する事で大推力・高比推力を実現す る。本研究室が参加しているヘリコンプラズマスラスタ 開発チームである Helicon Electrodeless Advanced Thruster (HEAT) プロジェクトではこの電磁加速として プラズマ中に誘起した周方向電流 jaと磁気ノズルによ る径方向磁場 Br が作るローレンツ力 Fr を用いる。jaの 誘起法として HEAT プロジェクトでは回転電界法、回転 磁場法、ポンデロモーティブ力法、m = 0 コイル法の検 証を行っており、本研究室では回転磁場法^[3](Rotating Magnetic Field: RMF)とm=0コイル法^[4]の原理実証を 行っている。原理実証および電磁加速の最適化には 誘起周方向電流や電子密度の分布など電磁加速下プ ラズマの振る舞いを詳細に観測する必要があり、本研 究室のヘリコンプラズマ実験装置である大型ミラー装

図1 大型ミラー装置(a)、スラストスタンド周辺の永久磁石磁場分布(b)

置(Large Mirror Device: LMD)^[5]では各種静電プロー ブ、分光計測、レーザー誘起蛍光法など多くのプラズ マ計測装置が実装されている。これまではイオン流速 や電子密度計測から間接的に推力を計測していたが、 実際の推力には中性粒子が担う分も無視できず、直接 推力計測が求められる。

本研究の目的は直接的に推力計測が可能なスラスト スタンドを開発し、電磁加速法評価ツールとして完成さ せることである。スラストスタンドの計測方式としては推 進機全体を振り子の上に乗せるものと、振り子に設置し たターゲットで排気プラズマを捕集し、その振れ幅から 推力を見積もるターゲット法があるが、本研究室の実験 装置 LMD は熱推力を受ける石英管、電磁的な推力を 受ける電磁石・永久磁石が大きく振り子に設置するの が難しいため、ターゲット法を選択した。推力の計測レ ンジとしては 1~30 mN,最小分解能としては 0.2 mN、 計測インターバルは10s程度とし、ターゲットは高密度 となるヘリコンプラズマに耐えられるよう耐久性の高いも のとする。

3. 実験装置

図1に今回推力計測に使用したヘリコンプラズマ実 験装置である LMD を示す。この装置の真空容器は放 電部であるテーパー石英管(内径 100 mm、テーパ後 端内径 170 mm、長さ 1,000 mm)とバッファータンクとな る円筒容器(内径 445 mm,長さ 1,700 mm)からなる。 円筒容器後端には排気装置が設置されており、2 台の ターボ分子ポンプ(それぞれ 1,000 l/s、2,400 l/s)により 背景圧およそ 10⁻⁴ Pa、実験時のアルゴンガス供給時の 石英管内で 0.1 Pa 程度の圧力としている。石英管には

プラズマ生成用アンテナとしてハーフへリカルアンテナ が設置されている。本実験ではこのアンテナから7 MHz,~3kWの高周波電力を供給しプラズマ生成を行 った。ヘリコンプラズマ放電に必要な磁場は永久磁 石、電磁石を用いて印加している。永久磁石は電磁加 速法に必要不可欠な強い発散磁場を形成するために 用いられ、ハーフヘリカルアンテナ周囲に小型ネオジ ム磁石をホルダーを設けて 300 枚設置している。ま た、軸方向位置を変更可能で一台ごとに使用、不使用 を選択できる電磁石も併設されており、細かい磁場配 位の設定が可能となっている。典型定期な磁場強度は プラズマ生成アンテナ軸中心で数十 ~ 数百 G であ る。石英管テーパー部には電磁加速法として回転磁場 法(Rotating Magnetic Field: RMF)と*m* = 0 コイル法の アンテナを設置している。これらはどちらもプラズマに 周方向電流 inを誘起させ、これと発散磁場の径方向成 分 Brによるローレンツ力 Frによってプラズマを軸方向 に加速するものである。計測装置としてはアルゴンイオ ン・中性粒子流速計測としてレーザー誘起蛍光法 (Laser Induced Fluorescence: LIF)、密度計測としてラ ングミュアプローブ、流速計測としてマッハプローブを 用いている。ラングミュアプローブ、マッハプローブは 真空容器に設置したゲージポートから挿入され、その 掃引により石英管内をスキャンできるようになっている。 LIFについても計測位置を石英管内の軸方向、径方向 に走査できるようになっており、生成部、電磁加速部の 流速をプラズマに擾乱を与えることなく計測できるよう になっている。

LMD 装置の典型的なプラズマパラメータは高周波 (RF)電力 3 kW、7 MHz およびガス供給量 50 sccm に おいて電子密度 $10^{18} \sim 10^{19}$ m⁻³、石英管テーパー部イ オン流速については~ 3 km/s となっている。

4. スラストスタンド

図 2 に今回開発したスラストスタンドについて示す。 方式としては、排気されたプラズマの運動量を懸架さ れたターゲット部で捕集し運動量を受け取り、その応力 による振動の振れ幅を計測する事で運動量を計測す るターゲット型スラストスタンドを採用した^[6]。ターゲット は複数の平板リングと円錐コーンを組み合わせた円筒 ターゲットであり、この構造は飛来した排気粒子がコー ンで衝突・反射されリング部で多重反射することで正味 の運動量をターゲットに渡す、という概念で設計されて いる。なお、単純な平板をターゲットにした場合は排気 粒子のターゲット表面での反跳によってターゲットに 2 倍以下の運動量が渡されてしまい、推力評価が難しく なることが報告されている。円筒ターゲットは当初は SUS316 で製作されたが、電磁石の磁場変動によっ て、機械加工による微小磁化で応力が働いてしまい計 測に不都合が発生する事が確認された。これを解決す るためにリングをポリカーボネイト板に置き換えたものを 製作し、その重量比に占める SUS316 を減量する事で 印加磁場の影響を計測誤差以下に収めることに成功 している。なお、ポリカーボネイトリングの放電による劣 化は確認されていない。

円筒ターゲットは2個のスパイクによって真空容器フ ランジから伸ばした支持台に懸架されている。ターゲッ トの振動の変位量は繰り返し誤差1µm、計測範囲5 mmのレーザー変位計(Keyence, IL-S025)により計測 される。

ターゲットの懸架に使用されるスパイクおよび支持台 は絶縁された電極になっており、ターゲット背面に設置 したコイル(ターゲットコイル)に接続される。ターゲット コイルには真空容器から支持されたコイル(ブレーキコ イル)が対向しており、これらに電流を流すことでターゲ ットに電磁力を働かせることが可能になっている。この 電磁力はターゲットの推力による変位の校正、計測時 のターゲット振動の制振に用いられる。制振の例として 図 2(3)に制振時の変位とブレーキコイル電流の時間発 展を示す。ターゲットコイルには定常電流が流されてお り、ブレーキコイル電流の方向、値を変化させることで 正負の応力がターゲットに与えられる。変位計からの信 号を微分した値をブレーキコイル電流アンプに入力す ることで高速に振動を抑えることができ、10 秒毎の計測 が可能である。

校正は既知の応力が与えられた際の変位量の関係 を得ることで行う。まずターゲットコイルとブレーキコイル に働く応力を電子天秤により計測して電流-応力の近 似式を得る。次に、ターゲットコイル、ブレーキコイルに LMDの典型的放電時間である 75 ms に近い 50, 100, 200 ms のパルス電流を印加して変位量を測定し力積-変位量の近似式を得る。図 3 に校正結果のグラフ、得 られた近似式を式(1)に示す。

3

ただし、F: 推力[mN]、x: 変位[µm]、T: パルス印加 時間[ms]である。これら結果から、推力の最小分解能 は放電時間 75 ms の場合 0.2 mN 以下となり、当初予 定した性能を満足する事が確認された。

4. 推力計測

図4に推力計測結果を示す。図4(a)はRF電力と推 力の関係を、(b)は RF 電力と電力効率を、(c)は RF 電 力と比推力の関係をガス流量ごとに纏めている。なお、 この実験では永久磁石磁場のみを用い、電磁加速は 行わず生成アンテナにのみで生成したプラズマを計測 している。(a)の結果から、推力は全てのガス流量にお いて電力増加に比例して増加する傾向が見られ、最大 推力は 40 sccm、2.8 kW における 5.0 mN である。 電子 密度計測においてもRF電力に比例した電子密度増加 が見られており、推力が電子密度に比例する事が示唆 される。(b)では流量が40,50 sccm、電力1.5 kWの際 に最も電力効率が高くなることが示されている。最大効 率は 40 sccm、1.5 kW における 1.9 mN/kW であった。 一方、(c)の比推力では流量が少ないほど高比推力と なる傾向が示された。最大比推力は 20 sccm、2.8 kW における700 s である。これらの値は他のヘリコンプラズ マを利用したスラスタ^[7]の結果から比べて小さい値とな ったが、プラズマ生成部とターゲット部が遠いことにより プラズマの運動量が損失することなどが原因として考え られる。

5. 結論

電磁加速法の評価・最適化のための推力計測器とし て円筒ターゲット型スラストスタンドを開発した。プラズ マの運動量を正確に授受するために内部での反射を 利用する円筒ターゲットを採用し、ポリカーボネイトによるリング部、SUS316 によるコーン部による円筒ターゲットを開発した。スラストスタンドの校正、制振のために二つのコイルを利用した制振機構を開発した。一方のコイルはターゲットに設置され、懸架ヒンジを利用した応力フリーコンタクトを通して電流供給される。もう一方のコイルは真空容器底部に設置され、ターゲット側コイルと対向し、それぞれの電流で応力を発生する。既知の応力・力積によるスタンドの校正、また変位信号を利用した制振回路によって最小分解能 0.2 mN、計測範囲 0~50 mN、計測インターバル 10 s を実現した。

このスラストスタンドを使用した推力計測初期実験を 行い、最大推力:5.0 mN (40 sccm, 2.8 kW)、最大電力 効率:1.9 mN/kW (40 sccm, 1.5 kW)、最大比推力:700 s (20 sccm, 2.8 kW) を得た。

今後の課題として、完全に磁場変動による影響を除 去するためにコーン部、ヒンジ部の全てを非磁化素材 とした完全非磁化ターゲットの開発を計画している。ま た、発散磁場形状を示すプラズマ排気部において、タ ーゲット設置位置による計測値の変化について調査す るために磁場形状の変化およびターゲット位置を変化 させた推力計測実験が必要である。

献

 S. Shinohara, H. Nishida, T. Tanikawa, I. Funaki and K. P. Shamrai, Trans. Fusion Sci. Technol 63, 16 (2013).

文

- [2] R. W. Boswell, Phys. Lett. 33A, 457 (1970).
- [3] I. R. Jones, Phys. Plasmas **6**, 1950 (1999).
- [4] S. Shinohara, T. Hada, T. Motomura, T. Tanaka, T. Tanikawa, K. Toki, et al., Phys. Plasmas 16, 057104 (2009).
- [5] S. Shinohara, S. Takechi and Y. Kawai, Jpn. J. Appl. Phys. 35, 4503 (1996).
- [6] M. Coletti, A. Balestra, M. Sensimi and G. Paccani, Proc. 30th Int. Electric Propul. Conf., IEPC-2007-158 (2007).
- [7] K. Takahashi, C. Charles and R. W. Boswell, Phys. Rev. Lett. 110, 195003 (2013).