ラバール型磁気ノズル重畳による MPD 推力増加

鈴木清孝、伊澤裕紀、小林洋平、高橋和貴、安藤晃 (東北大院・工)

1. はじめに

MPD(Magneto-Plasma-Dynamic)推進機は電磁 加速機構によるプラズマ加速を利用した電気推進 機で、比較的推力が大きく、構造が簡素なことから 有力な候補の一つである。しかし、大電流アーク放 電による電極損耗や推進効率が比較的低いといっ た問題点があり、長期宇宙ミッションへの実用化に 向けてこれら課題の克服が求められている。

現在、上記の課題に対する改善策として外部磁場 の印加が検討されている。MPD 推進機に外部磁場 を印加することにより、電極の熱損失の低減や推力 の上昇が報告され、その動作機構の解明や高効率化 に向けた研究が行われている[1]。

MPD スラスタ出口近傍に軸方向磁場を印加する ことにより周方向電流が流れ、印加した磁場との相 互作用によりスワール加速やホール加速などの電 磁的加速効果[2,3]が得られることにより、推力が増 加する。また、軸方向磁場に起因する周方向電流に より電極上の電流集中を緩和し、電極損耗を大幅に 低減できることも外部磁場を印加する重要な利点 である[4]。

本研究室では外部磁場印加型 MPD 推進機の出口 部に発散型磁気ノズルを形成し、MPD スラスタの 性能向上に関して様々な研究を行ってきた。スラス タ下流部に設置した円筒形スラストターゲットを 用いて推力測定を行い、発散型磁気ノズルを印加す ることで推力が向上することが確認された。また、 磁気ノズル印加強度を増加させていくに従い推力 が向上することが確認された[5]。

しかしながら、発光分光法を用いたプラズマ流の 軸方向流速、イオン温度の測定により、発散型磁気 ノズル下流部における軸方向流速の減少とイオン 温度の増加が観測され、ノズル下流部でイオンの熱 化現象が起こっていることが明らかになった[6]。ま た、このイオンの熱化によりイオンマッハ数は1以 下に制限されることも同様の実験で確認されてい る。これらの先行研究結果から、発散型磁気ノズル 下流部におけるイオンの熱化現象を抑制すること で、MPD スラスタのさらなる推進性能向上が期待 される。

本研究では上記の熱化現象を抑制するため、 MPD スラスタ下流部にラバール型磁気ノズルを追 加重畳し、発光分光法を用いてプラズマ流の軸方向 流速とイオン温度の定量的評価を行なった。また、 円筒形スラストターゲットを用いて MPD スラスタ の推力測定を行なった。

2. 実験装置・方法

2.1. 実験装置

本研究は、東北大学の HITOP 装置(High density TOhoku Plasma 装置)を用いて行われた。装置概略 図を図1に示す。真空容器は、ステンレス製で全長 3.4 m、内直径0.8 mの円筒容器で、その周囲には 大小17 個の磁場コイルが設置されており、最大0.1 T の磁場を形成可能である。ここで、*MPD* スラス タの陰極先端を原点として流れ方向に Z 軸の正方 向を取り、鉛直上方をY軸正方向として右手系とな るように座標軸X、Y、Z軸を定義している。

真空容器の片端には図2に示すような MPD スラ スタが設置されている。中心部の棒状陰極はタング ステン製(外直径1cm)、環状の陽極はモリブデン製

author's e-mail:kiyotaka@ecei.tohoku.ac.jp

(内直径 3cm)である。放電電流はパルス整形回路 (*PFN*: Pulse Forming Network)により供給され、最 大で 10kA までの放電電流が約 1msec 間維持でき る。作動ガスは He を用いている。

図2 外部磁場印加型 MPD 推進機

MPD スラスタ陽極外側には発散型磁気ノズル重 畳用の小型磁場コイルが設置されている。また今回、 MPD スラスタ下流部に新たにラバールノズル用の 小型磁場コイルを設置し、これら小型コイルの磁場 と HITOP 外部にあるコイルの磁場を重畳すること で MPD スラスタ出口近傍に図3に示すような磁気 ノズルを形成できる。また小型コイルにはパルス的 に電流を流すことでパルス幅数 10msec の磁場が 生成可能となっている。

+ 発散型磁気ノズル(Bzc = 0.28 T)

2.2. 分光計測

本研究では MPD スラスタ出口近傍の窓にカメラ レンズを設置し、光ファイバ、分光器を通してプラ ズマの発光スペクトルを取得した。今回は時間分解 能が 0.1 msec、波長分解能が 0.0081 nm/pixel の Czerny-Turner 型可視領域分光器を実験に用いた。 測定波長は He II (468.575 nm)である。

次に、本研究で用いた発光分光法を用いた流速、 イオン温度の導出方法について述べる。流速 U と イオン温度 T_iはそれぞれ式(1)、(2)によって求める ことができる。

$$U = \frac{\Delta \lambda_D}{\lambda_m \sin \varphi} c \tag{1}$$

$$T_{\rm i} = \frac{m}{2k_B} \left(c \, \frac{\Delta \lambda_{1/e}}{\lambda_m} \right)^2 \tag{2}$$

ここで、 $\Delta \lambda_D$ はドップラー効果による波長ずれ、 λ_m は測定波長、 φ はプラズマ流に対して垂直方向と斜 め方向の直線がなす角度、cは真空中の光速、mは イオンの質量、 k_B はボルツマン定数、 $\Delta \lambda_{1/e}$ はスペ クトル波形の 1/e 半値幅である。なお測定スペクト ルはドップラー拡がりが支配的であると仮定して いる。プラズマの発光スペクトルとドップラー効果 によるずれ、半値幅をそれぞれ測定することによっ て、流速、回転速度、イオン温度を求めることがで きる。

図4に典型的な測定スペクトルを示す。●がプ ラズマ流に対して垂直方向から取得したスペクト ルであり、■がその垂直方向に対して20°だけ斜 め方向から取得したスペクトルである。両スペクト ルにはドップラー効果によって図4のように波長 ずれムλoが生じ、(1)式から流速Uが算出可能であ

2.3. 推力測定

次に、*MPD* スラスタの推進性能を評価するため *MPD* スラスタ下流部に円筒形スラストターゲット を設置して推力測定を行なった。スラストターゲッ トがプラズマ流から受けるインパルスビットを l_{bit} 、 放電持続時間を Δt とすると、推力 Fは式(3)で表さ れる。

$$F = \frac{I_{\text{bit}}}{\Lambda t} \tag{3}$$

レーザー変位計を用いてスラストターゲットの変 位を計測し、その変位からインパルスビット I_{bit} を 導出した。導出には較正実験から得られた図 5 の関 数を用いている。また、放電持続時間 Δt は放電電流 波形から 1.6 msec とした。推進効率 η はターゲット で測定した推力 Fを用いて式(4)から算出を行なっ た。

$$\eta = \frac{F^2}{2\dot{m}P} \tag{4}$$

ここで前は質量流量、Pは投入電力である。

図5 ターゲット変位とインパルスビットの関係

今回の実験ではガス種に He を用い、質量流量は 0.028 g/s であるものとする。放電電流は、分光計 測では 7.1 kA、推力測定では 2.0 -7.1 kA まで変化 させて実験を行なった。

3. 実験結果

3.1. 分光計測結果

今回の分光計測では推進剤として He を用いて、He II (468.575 nm)のスペクトルラインを測定した。 MPD スラスタ出口近傍に印加する磁場 B_z を図3のように変化させて各プラズマパラメータの計測を行なった。

- 図 6 MPD 出口近傍における軸方向流速とイオン温度 一様磁場(B₀ = 0.1 T)
 - + 発散型磁気ノズル(B_{zc} = 0.28 T)
 - + ラバール型磁気ノズル(B_{zL} = 0, 0.096, 0.15 T) 放電電流 *I*_d = 7.1 kA

MPD 出口近傍におけるプラズマ流の軸方向流速 とイオン温度の軸方向依存を図6に示す。ここで図 中のハッチング部分はラバールノズル用パルスコ イルの位置を示している。発散型磁気ノズルのみを 印加した場合(▲)、下流部において軸方向流速の減 少とイオン温度の増加が観測され、イオンの熱化現 象が起こっていることを実験的に確認した。一方、 ラバール型磁気ノズルを MPD スラスタ下流部(Z = 10 cm)に追加重畳することで(●、□)、ラバールノ ズル通過後軸方向流速が増加しイオン温度が減少 する結果が得られ、ラバール型磁気ノズルを印加す ることでイオンの熱化現象が抑制されていること が明らかとなった。

続いて、軸方向流速とイオン温度の測定結果から (5)式を用いてイオンマッハ数を計算した。

$$M_i = \frac{B}{\sqrt{\frac{k_B(\gamma_e T_e + \gamma_i T_i)}{m_i}}}$$
(5)

ここで Uは軸方向流速、 k_B はボルツマン定数、 m_i は イオン質量であり、 γ_e 、 γ_i はそれぞれ電子及びイオ ンの比熱比、 T_e 、 T_i はそれぞれ電子温度及びイオン 温度である。電子は等温変化を仮定($\gamma_e = 1$)し、イ オンの比熱比は $\gamma_i = 5/3$ 、 $T_e = 5 \text{ eV}$ として計算した。 計算結果を図7に示す。

- 図7 MPD 出口近傍におけるイオンマッハ数 一様磁場(B₀ = 0.1 T)
 - + 発散型磁気ノズル(B_{zc} = 0.28 T)
 - + ラバール型磁気ノズル(B_{zL} = 0, 0.096, 0.15 T) 放電電流 *I*_d = 7.1 kA

発散型磁気ノズルのみを印加した場合(▲)、下流部 においてイオンマッハ数が減少し、マッハ数は1以 下に制限される結果が得られた。一方、ラバール型 磁気ノズルを追加重畳することで(●、□)、ラバー ルノズル通過後イオンが M_i>1まで加速され、下流 部において超音速流が発生していることが明らか となった。

3.2. 推力測定結果

MPD スラスタ出口近傍に印加する磁場 B_zを図 3 のように変化させて推力測定を行った。分光計測と 同様、推進剤には He を用い、質量流量は 0.028 g/s である。推力 F、投入電力 P_{in}、推進効率ηの計測結 果をそれぞれ図 8(a)(b)(c)に示す。

図 8 (a)推力、(b)投入電力、(c)推進効率の放電電流依存 一様磁場(B₀ = 0.1 T)

- + 発散型磁気ノズル(B_{zc} = 0.28 T)
- + ラバール型磁気ノズル(B_{zL} = 0, 0.096, 0.15 T) 放電電流 *I*_d = 2.0 - 7.1 kA

図 8(a)(c)から分かるように、ラバール型磁気/ ズルを印加することで MPD スラスタの推力と推進 効率が増加する結果が得られ、ラバール型磁気/ズ ル強度 B_{zL} = 0.15 T では推力 7.2 N、推進効率 53 % を達成した。

また図 8(b)について、ラバール型磁気ノズルを印 加しても投入電力に大きな変化はみられなかった。 今回の実験では一様磁場 0.1 T、発散型磁気ノズル 0.28 T、ラバール型磁気ノズルをそれぞれ印加した ため、消費される総電力は MPD スラスタの放電電 流と放電電圧の積で求められる投入電力と、各磁場 を発生させるために消費される電力の和で表され る。0.1 T 一様磁場を発生させるために消費される 電力は9kW程度で磁気ノズルを形成するために消 費される電力は 10 - 40 kW 程度であった。投入電 力は MPD スラスタに印加する外部磁場により変化 し、磁気ノズルを印加することでアノード・カソ ード間の逆起電力が増加するために投入電力は増 加した[7]。二つの消費電力を足し合わせた結果、電 気推進に消費される総電力の大半が放電によるも のであることが分かった。

3.3. 等エントロピー1 次元流れを用いた 加速機構の解明

HITOP 装置で生成されるプラズマ流に等エント ロピー1 次元流れのモデルが適応できるとすると、 以下の式(6) - (9)が成り立つ[8]。

$\frac{dM}{dM} =$	$=\frac{2+(\gamma-1)M^2}{2}\frac{dA}{dA}$	(6)
Μ	$2(M^2-1)$ A	
$\frac{dU}{dU} =$	$=\frac{1}{M^2-1}\frac{dA}{A}$	(7)
U dn	$M^2 - 1 A$ $M^2 dA$	
$\frac{un}{n} =$	$\frac{M}{M^2-1}\frac{dA}{A}$	(8)
$\frac{dT}{T} =$	$-\frac{(\gamma-1)M^2}{M^2-1}\frac{dA}{4}$	(9)

但しMはマッハ数、γは比熱比、Aはノズル断面積、 Uは流速、nは密度、Tは温度である。図 9(a)に示 すような流体が通過する断面積が変化するノズル をラバールノズルといい、ラバールノズルにおける (6) - (9)式の挙動を図示したものが図 9(b)である。 イオンマッハ数の実験結果(図 7)から、ラバールノ ズルに流入するプラズマ流はイオンマッハ数が 1 以下の亜音速流であるため、図 9(b)の①が適応でき ると考えられる。下流に行くに従いラバール型磁気 ノズルによってノズル断面積が減少し、流速及びマ ッハ数が増加し、イオン温度は減少する。スロート 部でマッハ数が1になり、スロート通過後は図 9(b) の②が適応される。スロート通過後はノズル断面積 が増加し、さらなるプラズマ流の加速が生じる。等 エントロピー1次元流れモデルを用いたこのプラズ マパラメータ変化は実験結果と定性的に一致して おり、ラバールノズルによる空力的加速が今回の推 進性能向上に大きく寄与したものと考えられる。

しかしながら、モデルから算出した理論値と実験 結果の定量的評価はできていないため、今後磁気プ ローブ、静電プローブを用いた詳細な解析を行う予 定である。

4. まとめ

発散型磁気ノズルを印加した際 MPD 推進機下流 部で生じるイオンの熱化現象が推進性能の低下に つながることが示唆された。今回、この熱化現象を 抑えるためにスラスタ下流部にラバール型磁気ノ ズルを追加重畳し、軸方向流速、イオン温度の軸方 向依存、推力の放電電流依存を計測した。

ラバール型磁気ノズルを追加重畳することによ って、ラバールノズル通過後、軸方向流速が増加し、 イオン温度が減少する結果が得られ、ラバール型磁 気ノズルを印加することでイオンの熱化現象が抑 制されていることが明らかとなった。また、下流部 においてマッハ数は1を超え、ラバールノズルを印 加することで超音速流が生成されていることを確 認した。

推力測定の結果から、ラバールノズル印加による 推進性能の向上を実験的に確認し、最大推力 7.2 N、 最大推進効率 53%を達成した。

また、等エントロピー1次元流れを用いてラバー ルノズル印加による加速機構に関する評価を行い、 ラバールノズルによる空力的加速が、今回の推進性 能向上に寄与したことが定性的に明らかとなった。

5. 参考文献

- H.Tahara, F.Takiguchi, Y.Kagaya and, T.Yoshikawa, 22nd Int. Electric Propulsion Conf, Paper IEPC-91-073 (1991)
- [2] A.Sasoh, Journal of Propulsion and Power, 10, 251 (1994)
- [3] D.B.Fradkin, A.W.Blackstock, D.J.Roehling *et al.*, AIAA Journal, **8**, No.5 (1970)
- [4] H. Tahara et al., AIAA Paper, 28, 2554 (1990)
- [5] 渡部 博他; 平成 23 年度宇宙輸送シンポジウム(2012)
- [6] 伊澤 裕紀 他, 平成 24 年度宇宙輸送シンポ ジウム(2013)
- [7] Richard M. Patrick, Arthur M. Schneiderman, AIAA Journal, **4**, No.2, pp.283-290 (1966)
- [8] Francis F. Chen, INTRODUCTION TO PLASMA PHYSICS AND CONTROLLED FUSION (1984)