DME を推進剤に用いたアークジェットスラスタの作動の改善

○久岡 成三, 佐々山 浩二 (九工大・工・院), 林 晃一 (九工大・工・学) 各務 聡 (宮崎大・工), 橘 武史 (九工大・工院)

1 緒言

アークジェットスラスタとは、宇宙用推進機の一種であり、 アーク放電により生成した高温のプラズマをノズルで膨張さ せることにより推力を得る¹⁾. このスラスタは、電気推進機の 中でも構造が単純であり、推力が比較的大きいといった長所を もつ.現在、推進剤として主に使用されているヒドラジンは、 化学推進機と併用が可能であり、過去に実績があるため信頼性 が高い. その一方で、毒性が非常に強いため、安全コストが高 くなる.また、凝固点が高いため、液体での貯蔵にはヒータが 必要であり、気化させるために用いる触媒が脆く配管に詰まる という問題もある.

そこで、ヒドラジンに代わる新規推進剤として、ジメチルエ ーテル(以下 DME)を提案してきた. DME は無毒であり、凝 固点が低いことから、ヒータを用いなくても容易に液体での貯 蔵ができる.また、適度な蒸気圧を有するため、加圧用ガスが 不要であり、温度調節により気体としての供給が可能となる².

これまでに、DME を推進剤に用いてアークジェットを作動 させ、高電圧モードと低電圧モードを有することや、従来のア ークジェットと同様の性能が得られることを示した³⁾. その一 方で、作動により生成された煤が、陰極の先端やコンストリク タの下流に付着し、作動が困難となるだけではなく、プルーム が振れるなど放電電圧が不安定となる問題があった. そこで本 研究では、煤の生成・付着を抑制し、作動及び放電を安定させ るために、DME に亜酸化窒素(以下 N₂O)を混合することを 着想した. 今回、DME と N₂O の混合割合を変えて実験を行い、 作動の様子や性能について評価した.

2 実験装置及び実験方法

2.1 実験装置

本研究で用いたスラスタの形状を Fig. 1 に、スラスタの諸元 を Table 1 に示す. 陰極にはトリエーテッドタングステンを用 い、陰極の直径を 2 mm、陰極先端半頂角を 90 °、電極間距離 を 1 mm とした. 陽極には耐熱性に優れた銅タングステンを用 いた. 実験装置の概略を Fig. 2 に、実験条件を Table 2 に示す. 推進剤には DME と N₂O の混合気体 (以下 DME/N₂O) の他に、 酸素原子の有無による影響を調べるために DME と N₂ の混合 気体 (以下 DME/N₂) も用いた.

2.2 実験方法

実験方法を以下に記す.真空チェンバ内に設置したスラスト スタンドにスラスタを取り付け,チェンバ内を減圧する.次に, マスフロコントローラを用いて推進剤を一定流量で供給する. 供給した推進剤は混合器により混合され,スラスタへと送られ る.スラスタへの推進剤の供給を確認後,定電流電源より放電 電流を供給することでスラスタを作動させ,各測定値を得る.

Table 1 Z	└研究で用レ	たス	ラスタ	諸元
-----------	--------	----	-----	----

陰極直径, mm	2
陰極先端半頂角, deg	90
コンストリクタ直径, mm	1
コンストリクタ長さ, mm	1
コンストリクタ上流角, deg	90
コンストリクタ下流角, deg	30
開口比	100
プレナムチェンバ直径, mm	6
電極間距離, mm	1
	•

Table 2 実験条件

推進剤	DME/N ₂ O, DME/N ₂				
推進剤流量, mg/s	40 (40/0, 35/5, 30/10, 0/40), 50 (50/0, 45/5, 40/10, 0/50), 60 (60/0, 55/5, 50/10, 45/15, 0/60)				
放電電流, A	13, 20, 30				

3 実験結果及び考察

推進剤が DME, N₂O, N₂のみの場合の作動を比較する. DME 及び N₂O を用いるとプルームは不安定であったのに対し, N₂ を用いた場合ではプルームは安定していた. DME のみの場合 にプルームが不安定であったのは, 電極に煤が付着することで, アークスポットが変化したためであり, N₂O のみの場合に不安 定であったのは, 電極が損耗することでノズルの形状などが変 化したためであると考えられる.

次に、DME に N_2O 及び N_2 を混合した場合の作動を比較す ると、どちらもプルームは不安定なままであった.これは、ど の混合割合においても DME の混合割合が高いため、作動によ り電極に煤が付着したためであると考えられる.なお、電極へ の煤の付着量や付着の仕方は、今回の混合割合では、 N_2O 及び N_2 を混合しても、DME のみでの結果と大きな差はみられなか った.

推進剤流量 60 mg/s, 放電電流 30 A での DME/N₂O 及び DME/N₂の放電電圧の波形を Fig. 3 に, 作動後の陰極の様子を Fig. 4 に示す. N₂O を混合しても, DME のみの結果と大きな違 いはみられなかった. しかし,標準偏差をとって比較してみる と, 放電電流 30 A での結果では, N₂O を混合した場合, N₂O の混合量を増やすと波形が安定に向かう傾向が見られた. 一例 として,推進剤流量 60 mg/s, 放電電流 30 A での放電電圧の平 均値と標準偏差を Table 3 に示す. N₂を混合した場合はこの傾 向が見られなかったことから,作動の安定化には,酸素原子が 含まれることや, N₂O が高温状態となると発熱分解を始めるこ とが影響していると考えられる.

推進剤流量 60 mg/s, 放電電流 30 A での DME/N₂O 及び DME/N₂における比パワと比推力の関係を Fig. 5 に示す. 今回 の混合量において, DME/N₂の場合は DME のみのときと同等 で変化がみられなかったのに対し, DME/N₂O の場合は比推力 の低下がみられた. これは, DME/N₂O での作動では, これま で電極に付着していた煤の一部が CO や CO₂などになることで ノズルから噴出され, その影響でガスの平均分子量が増加した ためであると考えられるが, 今回の実験では詳細な理由は判明 しなかった.

以上の結果より、DME に今回よりも多量に N₂O を混合する ことで作動の安定化を図ることができると考えられる.

4 結論

DMEにN₂Oを混合することで、以下の知見を得た.

- ・今回の混合量では、煤の生成の抑制及び作動の安定化には至 らなかった.
- ・ 放電電流 30 A での作動では、放電電圧が安定に向かう傾向 がみられた。
- ・N₂Oを混合することにより、比推力が低下した.

(d) DME/N₂O \cdots 45/15 mg/s

- (e) DME/N₂O \cdots 0/60 mg/s
- Fig.4 作動後の陰極の様子 (推進剤流量 60 mg/s,放電電流 30 A)

Table 3 放電電圧の平均値及び標準偏差 (推進剤流量 60 mg/s,放電電流 30 A)

推進剤流量, mg/s	DME/N2O		DME/N ₂				
	平均值, V	標準偏差, V	平均值, V	標準偏差, V			
60/0	88.0	9.4	88.0	9.4			
55/5	97.1	10.2	93.5	11.5			
50/10	94.3	8.7	103.9	8.7			
45/15	106.5	6.0	91.1	8.7			
0/60	65.5	8.6	65.5	2.9			

参考文献

- 1) 栗木 恭一, 荒川 義博, 電気推進ロケット入門, 東京大学 出版会, 2003
- 2) 日本 DME フォーラム, DME ハンドブック, オーム社, 2006
- 3) 各務 聡, 別府 真司, 毎熊 宗幸, 橘 武史, "ジメチルエー テルを用いたアークジェット推進機の推力評価",日本航空 宇宙学会論文集, Vol. 59 (2011), pp. 1-6