パルス重畳電源を用いたホールスラスタのイオンエネルギー分布

○伊藤匠、山本直嗣、中島秀紀(九州大・総理工)

1. 研究の背景

ホールスラスタはロシアが中心となって開発 が進められてきた電気推進機の一つであり、これ までに200機以上の作動実績がある.その特徴と して、イオン加速領域に電子が存在するため、空 間電荷制限則を受けず、推力密度が高くコンパク トという特徴がある⁽¹⁾.また、長寿命化が期待で き、高い推進効率と高比推力を両立出来ることも 利点として挙げられる⁽²⁾.そのためホールスラス タは地球近傍ミッションに適しており、衛星への 搭載例として ESA (欧州宇宙機関)で月探査機 SMART-1⁽³⁾に用いられた.さらには NASA の小惑 星捕獲ミッションにおいても 10kW 級の大型の ホールスラスタを用いることが計画されている ⁽⁴⁾.このように、ホールスラスタは次世代宇宙推 進機として現在最も注目されている.

スラスタの長寿命化,大推力化を推し進める上 で,電源の小型効率化が必要不可欠であるが,電 源の小型化で問題となっているのが放電振動で ある.ホールスラスタでは作動時に様々な振動が 確認されており,中でも電離不安定性に起因する 放電電流振動が特に大きい⁽⁵⁾.放電振動の抑制は, 放電室形状や磁場形状などの推進機設計により 成功しているが,経年変化に伴い放電振動を起こ す条件が変わるため,スラスタの寿命まで放電振 動を抑制することは困難である.このため,放電 振動に備えて電源容量を多めにとっておく必要 があり,電源の容量・重量の増加を招いている.

しかし, 放電振動は本来ホールスラスタの作動 において自然に発生するものであり, 作動停止さ えしなければ無理に放電振動を抑制しなくても 良いのではないかと考え, 放電振動を許容し, ス ラスタにとって無理のない作動をさせる電源と して「パルス重畳電源」が提案され, このパルス

	DC 電源	パルス重畳 電源
推進効率	0.22	0.26
推力電力比[mN/kW]	50	57
推力[mN]	10.0	9.5

重畳電源を使用すると推進効率,推力電力比に向 上がみられた⁽⁶⁾.両者の電源を用いた場合の性能 の比較を表1に示す.

しかしながら,パルス重畳電源を用いた場合, スラスタへの入力電圧「放電電圧」が変動する. しかもこの電圧は,パルスのチョッピング周波数 やインダクタ,コンデンサなどの回路定数の変化 で変わる.入力電圧の変化は,プラズマ生成・加 速領域の空間ポテンシャルの変動に直結するた め,排出されるイオンの運動エネルギーの変動や 平均エネルギーの低下やエネルギー幅が広くな ることが懸念されている.このため,最適なパラ メータ選定のために入力電圧波形とイオンエネ ルギー分布の関係を明らかにする必要がある.

そこで本研究では、「パルス重畳電源」を用い た際の入力電圧波形とイオンエネルギー分布の 関係を調査することを目的とする.

2. 実験装置

2.1 実験体系

ホールスラスタは外径 72 mm, 内径 48 mmの マグネチックレイヤ型ホールスラスタを使用し た.使用したホールスラスタを図1に示す.外部 に設置した 4 つのソレノイドコイルとスラスタ 中心部に設置したソレノイドコイル,軟鉄で作ら れた磁極により半径方向の磁場を作り出す. 陰極 にはホローカソード(Ion tech 社製 HC252)を使用

図1 ホールスラスタ写真

した. 作動ガスはキセノンを用い,ガス流量は 0.272 mg/s に固定した.

スラスタの作動実験は直径 1.0 m , 長さ 1.2 m のステンレス製真空容器内で行った. 真空ポンプ の排気速度は空気で 4.2×10³ l/s であり, 到達圧 力は 4.00×10⁻⁴ Pa, ガス流入時に 1.50×10⁻² Pa で あった.

放電電圧及び放電電圧をデータロガーを用い て測定するとともに、スラスタ下流 300 mm の位 置にイオンエネルギーアナライザ(RPA: Retarding Potential Analyzer)を設置し、イオンのエ ネルギーを計測した.

2.2 非平滑チョッパ型電源

図 2 にパルス重畳電源のひとつである非平滑 チョッパ型電源の回路図を示す.本回路は小型の DC-DC コンバータにおいてよく見られる形式で ある.太陽電池からのバス電圧が入力のV_{in}にあ たり, MOSFET のスイッチングパルスのデュー ティー比を変化させ,「平均的な出力電圧」とし て式(1)で与えられる出力電圧V_{out}の調節を行う.

図2 非平滑チョッパ方式電源回路

$$V_{out} = V_{in} \times \frac{1}{1 - duty} = V_{in} \times \frac{1}{1 - t_{on} \cdot f} \qquad (1)$$

一般的な DC-DC コンバータでは,電圧変換の 後に平滑用の大型コンデンサを必要とするが,こ の回路では出力パルス波形をそのままホールス ラスタの入力電源とするので大型の平滑用コン デンサは必要ない.そのため,長寿命のフィルム コンデンサやセラミックコンデンサの使用が可 能となり,電源の長寿命化が期待できる.また, 小容量のコンデンサしか用いないため,宇宙機に おいては大きな利点である.

本実験では回路定数を L=0.5mH, C=0.5µF, duty=0.333 (平均出力電圧 150V) とし, チョッピ ング周波数を 10kHz から 28kHz まで 2kHz 毎に 計測を行った.

2.3 イオンエネルギー分布関数

放電電圧波形とイオンエネルギー分布の関係 を調べるために, RPA を使用してイオン分布を計 測する. 図3に RPA の概略図を示す. RPA はコ レクタに前面に4枚のグリッドが設けられてお り, RPA に入ってくるイオンビームに対してグリ ッド(IRG)に正電位を印加し,そのエネルギーに 満たない低エネルギーイオンを遮断することに よってグリッドに印加した電位以上のエネルギ ーをもつイオンのみを捕集する装置である.ただ し,検出される電流値はμAからnAオーダーと非 常に小さいため,増幅,絶縁,フィルタ回路を備 えた I-V 変換回路を接続する.

3. 結果と考察

3.1 DC 電源での計測

非平滑チョッパ型電源での測定を行う前に, DC 電源を使用した際のエネルギー分布を測定し た.推進剤はキセノン,推進剤流量 1.36 mg/s , 放電電圧 150V での観測波形を微分・規格化する ことで得られるイオンエネルギー分布関数 (IEDF)を図4に示す.エネルギー分布関数の横軸 はエネルギー幅を比較するために 0~200 eV 一 定としている.

得られた IEDF からピークの位置は 80 eV 程度 であり,放電電圧から考えると低いが,これは設 計点よりもかなり低流量で作動しているために 低くなってしまったと考えられる.

3.2 非平滑チョッパ型電源での計測

次に, 非平滑チョッパ型電源を用いてエネルギ 一分布の測定を行った. 推進剤や推進剤流量, 磁 場形状などのパラメータは DC 電源での計測と 同じとし, チョッピング周波数を変化させて計測 を行った.

図5にチョッピング周波数10kHz での IEDF を

図 5 IEDF (10kHz)

示す. 図5より, DC 電源の IEDF と比較してエ ネルギー幅が広がり, ピークが2つ現れているこ とがわかる. これは, 放電電圧がおよそ 100V~200V の範囲で揺れており, チョッピング 周波数が低い場合には放電電流の同期がみられ ず, 放電電圧が高い時に生成されたイオンと, 放 電電圧が低い時に生成された低速のイオンの2 種類のイオンを計測したためだと考えられる(図 6参照).

次に周波数を上昇させて計測を行った.図7~ 10にそれぞれの IEDF を示す.12kHz 以降は放電 電流の同期が確認でき,イオン平均エネルギーが 減少していくことがわかった.チョッピング周波 数の上昇に伴い,電圧の変動幅やピーク電圧が小 さくなったこと,放電電圧と放電電流の位相がず れたためだと考えられる.また変動幅が小さくな ったために,エネルギー幅も狭くなっていくこと が確認できる.

計測を行った 26kHz まで、放電電流の同期は 確認できたが、22kHz 以降は IRG の出力波形の ノイズが大きく、IEDF 及びイオンの平均エネル

図 10 IEDF(20kHz)

ギーを測定することができなかった. I-V 変換回 路でのフィルタによるノイズカットや電源など を見直す必要があると思われる.

次に,図 11 に DC 電源及び非平滑チョッパ型 電源のイオン平均エネルギーの比較を示す. 12kHz 以降の同期範囲内において,チョッピング 周波数が高くなるにつれて平均エネルギーは減 少するものの,DC 電源よりも高い平均エネルギ ーを持つことがわかった.ただし,同条件での過

去の作動実験において, 推力に関しては周波数に よらずほぼ一定の値を得ている. つまり, イオン 平均エネルギーの減少分を補う程度に推進剤利

用効率が上昇している可能性がある.

4. 結論

ホールスラスタを DC 電源及び非平滑チョッ パ型電源で作動し,イオンエネルギー分布関数の 計測を行った.その結果,非平滑チョッパ型電源 を用いると,予想通りエネルギーの幅は広がり, さらに放電電流が非同期の際には 2 つのピーク がみられた.

今後,磁場形状や推進剤の流量,放電電圧を変 化させて計測するとともに,推進剤利用効率の変 化やイオンビームの発散角,寿命などの影響も調 査し,パルス電源の改良を行っていく.これと並 行して,推進機形状とパルス電源の関係も合わせ て調査していく.

謝辞

本研究は, JSPS 科研費 23686123 の助成を受け たものです.

参考文献

- V. V. Zhurin, H. R. Kaufman, R. S. Robinson, "Physics of Closed Drift Thrusters,"Plasma Sources Sci. Technol. 8, 1999, R1-R20.
- (2) 田原弘一,"最近の電気推進機の開発研究と プラズマ技術",新たな宇宙開発を拓く核融 合技術, J.Plasma Fusion Res. Vol.83, No.3, p266, 2007.
- (3) C. R. Koppel and D. Estublier, "The SMART-1 Electric Propulsion Subsystem,"AIAA-2003-

4545, 39th Joint Propulsion Conference, Huntsville, Alabama, July 20–23, 2003.

- (4) I. G. Mikellides, et al, "The Effectiveness of Magnetic Shielding in High-I_{sp} Hall Thrusters", 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013.
- (5) N. Yamamoto, K. Komurasaki, Y. Arakawa, "Discharge Current Oscillation in Hall Thrusters, "J. Propulsion & Power, Vol.21, (2005) pp.870-876.
- (6) 山本直嗣,民田太一郎,大須賀弘行,竹ヶ原 春貴,栗木恭一,"ホールスラスタのパルス同 期方式の開発",宇宙輸送シンポジウム, STEP-2012-024, 2012.