空気中を伝播するレーザー支持爆轟波の一次元数値解析

○寳川兼人,永瀬真司,葛山浩,加藤泰生, (山口大学院)

One-dimensional numerical simulation of laser supported detonation in air Takaragawa Kento, Nagase shinzi, Katsurayama Hiroshi and Katou Yasuo(Yamaguchi Univ.)

Key Words : Laser, Detonation, Propulsion

1. 緒言

全く新しい低コスト小型打ち上げシステムとして パルスレーザー推進がある.この推進方式は,地上 のレーザー基地から推進機にレーザーを伝送する. そのため、エネルギー源を推進機に搭載する必要が なく、ペイロード比を大きくする事ができる¹⁾.また、 機体の構造が簡潔なため、制作費を抑えることでき、 コスト低下が期待できる.さらに、一度レーザー基 地を建設してしまえば、コストは主に電気代だけと なるため、何度も打ち上げることで打ち上げコスト を償還することができる.しかし、推力を得るため の作動原理であるレーザー支持爆轟波(Laser Supported Detonation Wave, LSD)の詳しいメカニズム がわかっていない.

本研究では、LSDの詳しいメカニズムを解明する ための第一段階として、空気中を伝播するレーザー 支持爆轟波の様子を再現できる一次元コードを開発 する.また、開発したコードを用いて、レーザー支 持爆轟波の雰囲気圧力依存性を調べる.

2. パルスレーザー推進の作動原理

図1にLSD波の伝播の概念図を示す.推進剤にレー ザーを照射し,集光することで絶縁破壊が起こりプ ラズマ(レーザー吸収帯)が生成される.このレー ザー吸収帯は、レーザーを逆制動輻射で吸収し,高 温高圧になり,急激に膨張する.その結果、レーザ ー吸収帯前方に衝撃波が発生する.その後、レーザ ー吸収帯は膨張し,衝撃波を押すことでデトネーシ ョン構造を維持する.推進機は駆動された爆轟波の 伝播によって生じる反力から推力を得る.

図1. レーザー支持爆轟波(LSD波)

3. 計算方法

本研究では,熱化学非平衡を考慮した一次元

Navier-Stokes方程式を解く.作動流体を空気とする ため、空気の11化学種の化学反応モデルを用いた. また、温度非平衡モデルは、一般的なParkの2温度 モデル²⁾を用いた.空間積分は、MUSCL内挿を用い て、2次精度化したAUSM-DV法³⁾を用いて,有限体積 的に解いた.時間積分はガウス-ザイデルライン緩 和法⁴⁾を用い、時間精度は2次精度のCrank-Nicolson 法を用いた.また、レーザー吸収機構として逆制動 輻射を考慮している.逆制動輻射によるエネルギー 吸収量 Q_B は以下のように定義される.

$$Q_{IB} = I(x, t) \times k \tag{1}$$

ここで, kは以下のKempのもの⁵⁾を用いた.

$$k=1.37\times10^{-27}G\lambda^3 T e^{-1/2} n_e^{-2} (e^{0.014388/\lambda T e} -1) \qquad (2)$$

ただし、簡単のために中性原子-自由電子間衝突に 起因する吸収係数はイオン-自由電子間衝突に起因 する吸収係数kに比べて微小であるため無視する. また、ここでのI(x,t)はレーザー強度であり、関数x,tはそれぞれ空間、時間である. ここで、 λ , n_e , T_e はそれぞれ、レーザー波長、電子

ここで、 λ , n_e , T_e はそれてれ、 $\nu = y = -\omega_{EX}$, 电子 数密度,電子温度である.また、ガウントファクタ -Gを以下に示す.

$$G=1.04+3.74\times10^{-5}T_e-3.28\times10^{-10}T_e^2 \qquad (3)$$

4. 計算条件

計算条件を図2に示す. 左端に壁がある. 壁面に絶 縁破壊領域を用意し,予めレーザーを吸収するため の電子が存在している. レーザーは $Mori^{0}$ らの実験と 同じ CO_2 レーザーとするため,レーザー波長 λ =10.6µmとする. また, $Mori^{0}$ らの実験によると, LSD波が形成されるレーザー強度の閾値は 4.0MW/cm²以上である. そのため,本計算でのレー ザー強度は,確実にLSD波ができると考えられる 10.0MW/cm²とした. レーザー吸収はレーザーの1波 長程度のスケールで起きると考えられる. そのため, 格子幅は,レーザー吸収を捉えられるように,CO₂ レーザーの波長とほぼ同じの10μmとした.

図2. 計算条件

5. 計算結果及び考察

雰囲気圧力 P_a は $1atm \sim 0.1atm$ まで計算した. 以下 に、代表的な P_a の1atm、0.1atmでの計算結果を示す.

5.1 latmでの計算結果及び考察

図3に1atmでのLSD波の伝播の様子を示す. *t*=0.5µs ですでに初期条件の影響は消えており、その後は LSD波が定常的に伝播している様子がわかる.この 結果から、LSD波が定常的に空気中を伝播する様子 を再現できていることがわかった.

ここで、t=1.5µsでの現象を見ていく. 図4, 図5, 図6にそれぞれ1atmでの圧力p,重粒子温度 T_h ,電子 温度T。の分布(拡大図),吸収係数kと電子数密度n。の 変化、 n_e とレーザー強度 I_L/I_{L0} の変化を示す. 衝撃波 が発生し、衝撃波加熱によりTh, Teが徐々に上昇す る(図4). この時, T_h, T_cが上昇することにより化学 反応が進み、電子が生成され、n,が上昇する(図5、図 6). その後,図4で示す電離遅れ領域の間(幅0.5mm) で電子が生成され続ける. そして, n_が10²²1/m³程度 になると、吸収係数が急激に上昇する(図5). その結 果、レーザー吸収が開始されレーザー強度が100%か ら0%へ急激に減少している(図6). つまり、衝撃波背 後0.5mm程度でレーザー吸収帯が形成されている. また、レーザー吸収帯でレーザー吸収が行われるこ とにより, T_h, T_eが急激に20000K以上の高温になる (図4). 以上より、衝撃波が発生し、衝撃波背後に電 離遅れ領域があり、その後ろにレーザー吸収帯が続

くLSD波の構造をしていることがわかった.また, レーザー吸収が開始される n_e は 10^{22} l/m³程度である ことが分かった.

5.2 0.1atmでの計算結果及び考察

図7, 図8, 図9にそれぞれ0.1atmでのp, T_h , T_e の分 布(拡大図), $k \ge n_e$ の変化, $n_e \ge I_L/I_{L0}$ の変化を示す. 衝 撃波が発生すると同時に, T_h , T_e が19000K以上の高 温に急激に上昇している(図7). また, 衝撃波の発生 と同時に n_e が一気にレーザー吸収の閾値である $10^{22}1/m^3$ を超えるため,吸収係数が衝撃波発生位置と ほぼ同じ位置で急激に上昇している(図8). その結果, レーザー強度は衝撃波発生位置とほぼ同じ位置で 100%から0%へ急激に減少している(図9).以上の結果から、レーザー吸収帯は衝撃波と同じ位置で発生していることがわかった.また、衝撃波のすぐ後ろでレーザー吸収が起きるため、*T_h、T_e*が急激に上昇し、電離遅れ領域が消滅したと考えられる.

0.1atmでレーザー吸収帯が衝撃波に近づく原因を 考える.衝撃波関係式より,雰囲気圧力が下がるこ とで,衝撃波速度が速くなる.その結果,衝撃波加 熱が強くなり,衝撃波背後の化学反応が促進される. そのため、レーザー吸収帯が速く生成され,衝撃波 に近づくと考えられる.

図9.0.1atmでの電子数密度とレーザー強度

5.3 各雰囲気圧力での衝撃波,吸収帯速度

各雰囲気圧力での衝撃波速度D, 吸収帯速度D。と Raizerの理論CJ速度⁷⁾D_{CI}を比較する.ここで, Raizer の理論CJ速度とはチャップマン・ジュゲ状態(CJ状 態)での安定したデトネーション波の速度である.本 計算は,一次元計算であり空間的なエネルギー損失 がない. そのため、本計算で安定したデトネーショ ン波が形成されているのであれば、理論CJ速度と一 致すると考えられる.表1に1atmと0.1atmでの D_s, D_a , D_{Cl} を示す. latmでは、 $D_s \ge D_a$ に速度差があるため、 時間が経過するとレーザー吸収帯と衝撃波が離れて いく. その結果、レーザー吸収帯から衝撃波にエネ ルギー供給ができなくなり、LSD波の構造を保てな くなる.次に、0.1atmでは、 D_{a} と D_{a} の速度が一致し ている. そのため、LSD波の構造を保ったまま伝播 することができる.しかし、LSD波構造を保ったま ま伝播できるにもかかわらず、D_{CJ}とD_sは一致しなか った.

表1	各雰囲気	「圧力に	おける	各速度
11.	TTTT		AU11 1	

雰囲気圧力 $P_a[atm]$	1.0	0.1
衝擊波速度 $D_s[m/s]$	2766	7537
吸収帯速度 $D_a[m/s]$	2466	7525
Raizerの理論CJ速度 D _C [m/s]	4711	9028

6. 前方輻射加熱モデル⁸⁾

latmでLSD波の構造を保てない原因や,0.latmで LSD波を保てるにもかかわらず $D_{CI} \ge D_s$ が一致しな い原因として、レーザー吸収帯からの輻射による先 行加熱を考慮していないことが考えられる.そこで、 今回は、簡単な黒体輻射モデルを用いて、先行加熱 による効果を調べた.なお、計算は P_a =latmで行った. 図10に黒体輻射モデルの概略図を示す.レーザー吸 収帯を温度 $T_{eq,B}$ の黒体を仮定し、レーザー吸収帯前 方領域を温度 $T_{eq,B}$ の黒体輻射で加熱する.レーザー 吸収帯前方領域が加熱されることで電子が生成され、 レーザー吸収帯の生成位置が衝撃波に近づくと考え られる.

6.1 輻射を仮定した計算結果

図11と図12にそれぞれ1atmでの輻射ありの場合, p, T_h , T_e の分布(拡大図), $k \ge n_e$ の変化を示す. 輻射加熱 を入れると, 衝撃波前方で T_e が上昇する(図11). また, 衝撃波前方2mmから n_e が増加する(図12). さらに, 輻 射なしの場合(図4)と比較して, n_e がレーザー吸収の 閾値に速く到達し, レーザー吸収帯は衝撃波背後 0.4mmで生成され, 吸収帯生成位置は0.1mmほど短く なることがわかった. (図11, 図12).

次に、1atmでの輻射ありとなしの場合の D_s , D_a , D_{CI} の比較を表2に示す.

表2 輻射を	0	とな	しの各速度の比較
- 3人 4. 平田 / 」 (2)		C . A	$U \vee U \vee U \vee V \vee V U + X$

輻射	あり	なし	
衝擊波速度 $D_s[m/s]$	3767	2766	
吸収帯速度 $D_a[m/s]$	3550	2466	
$D_s \ge D_a$ の速度差[m/s]	217	300	
Raizerの理論CJ速度	4711	4711	
$D_{CI}[m/s]$			

輻射の仮定ありとなしでD_sを比較すると,輻射加熱 によって1000m/sほど速くなることがわかった.また, 速度差を比較すると,90m/sほど速度差が小さくなる ことがわかった.つまり,LSD波の構造を保ちやす くなっている.さらに,輻射ありの場合のD_sをD_{CJ} と比較すると,速度が速くなるためD_{CJ}に近づく.し

図11. 輻射を考慮したレーザー支持爆轟波の構造

図12. 輻射を考慮した吸収係数と電子数密度

かし、輻射による先行加熱を考慮しても、*D*_sは*D*_C に一致するまでには至らなかった.つまり、輻射を 考慮してもLSD波の構造を保ったまま伝播すること はできなかった.

しかし、今回用いた簡単な黒体モデルはあまりに 簡単すぎるため、より現実の現象に近い正確な輻射 モデルを使って詳しく前方輻射加熱の効果を調べる 必要がある.

7. 結言

本研究では、空気中を伝播するレーザー支持爆轟 波の様子を再現できる一次元コードを開発した.ま た、開発したコードを用いて、レーザー支持爆轟波 の雰囲気圧力依存性を調べた.

- ・開発したコードによってLSD波が定常的に空気中 を伝播する様子を再現できた.
- latmでは、時間が経過するとLSD波の構造を保つ ことができなかった。
- レーザー吸収が開始されるn_eの閾値が10²²1/m³程度 であることがわかった.
- ・0.1atmでは、減圧による強い衝撃波加熱の影響で LSD波の構造を保ったまま伝播することがわかった。しかし、D_CとD_sが一致しなかった。
- latmでLSD波の構造を保てなかったことや、0.latm でD_{CI}とD_sが一致しなかった原因として、輻射によ る先行加熱を考慮していないことが考えられる。
- ・簡単な黒体輻射モデルを用いて計算を行った. その結果, D_sはD_{Cl}に近づいたが, LSD波の構造を保つことはできなかった. そのため,より現実に近い正確な輻射モデルを考える必要がある.

参考文献

- 1) 葛山浩ら, 日本航空宇宙学会論文集, Vol. 54, No. 625 (2006), pp. 63-70
- 2) Park, C, John Wiley and Sons, New York (1990)
- 3) Wada, Y. and Liou, M. S. SIAM Journal on Scientific Computing, Vol. 18, No. 3 (1997), pp.633-657
- 4) MacCormack, R. W. AIAA paper 85-0032, 1985
- 5) H. Kemp, and P. Lewis, "Laser-Heated Thruster-Inter Report,"NASA CR-161665
- Mori, K., Komurasaki, K., and Arakawa, Y., Journal of Applied Physics, Vol. 95, No. 11 (2004), pp.5979-5983.
- 7) Raizer, Y.P.: Laser-Induced Discharge Phenomena, Consultants Bureau, New York and London, 1977, Ch.6.
- 8) 葛山 博,松田 淳,安部隆士:プリカーサ電離 を伴う強いアルゴン衝撃波背後での熱化学非平衡 の予備的調査