超小型高周波イオン推進機の プローブ診断とイオンビーム電流測定

○山田 郁美(京大工・院),鷹尾 祥典,江利口 浩二,斧 高一(京大工)

1. 緒言

近年,宇宙工学分野では超小型衛星の研究 開発が盛んである.超小型衛星には,製作時 間の短縮,打ち上げコスト削減などの利点が ある.しかし,超小型衛星には重量,体積, 消費電力の制限が厳しいという欠点があり, 現在開発されている大半の超小型人工衛星に は,推進機が搭載されていない.今後,より 能動的な軌道・姿勢制御を行うためには,推 進機を搭載することが推奨され,高性能な超 小型推進機 (マイクロスラスタ)の開発が必 須となる¹⁾.

このようなマイクロスラスタとして,著者 らは,図1に示すような高周波 (RF) 誘導結 合プラズマ源 (ICP: Inductively Coupled Plasma) を利用した超小型高周波イオン推進 機 (mRIT: micro RF Ion Thruster) を提案する. mRIT は磁石が不要で簡素な構造のマイクロ イオンスラスタであり,現在数値計算および 実験の両面から研究開発を行っている²⁻⁴.

ICP のプラズマ生成機構には、誘導結合に よる放電 (H-mode 放電) と容量結合による 放電 (E-mode 放電) が知られている ⁵⁾. H-mode が支配的な場合には高いプラズマ密 度が得られるが、一般的に低電力では E-mode になりやすい. そこで本研究では、mRIT の イオン源について、シングルプローブを用い たプラズマ診断を行い、電子密度 n_e と放電 mode 遷移のガス流量および RF 電力依存性 を調べた. また、次のステップとして、イオ ンビーム電流についても同様に調べ、電子密 度、mode 遷移との関連性について考察を行 った.

2. 実験装置・実験手順

図 2 に本研究で使用する mRIT の断面図を 示す.mRIT は石英管放電室,RF コイル,ス クリーン電極,アクセル電極から構成される. 放電室は半径 5 mm,長さ 10 mm の円筒形で あり,その周囲にコイルを 5 周巻いている. スクリーン電極,アクセル電極は厚さ 1 mm の円板形で,それぞれ中央に直径 3.0 mm, 1.8 mm の孔を 1 つ開けた形状である.また,電

図1 超小型高周波イオン推進機 (mRIT) 概念図

図2mRIT 断面図

極の間隙は 0.5 mm である. なお,本研究で は推進剤として Xe を用いる.

図3に示すように、実験装置は真空系,推進剤供給系,高周波供給系,グリッド回路系から構成される.真空チャンバの低真空排気にロータリーポンプ,高真空排気にターボ分子ポンプを用いて,背圧を1×10⁻⁴ Pa以下にした後,実験を行う.

推進剤のXeをレギュレータにより減圧し, 流量計 (Alicat Scientific, MCV-0.5SCCM-D, 図 3 中 MFC) で流量を調整して,放電室に供 給する. 信号発生器 (Agilent Technologies, E8257C, 図 3 中 SG) によって発信した高周波 を増幅器 (THAMWAY, T142-432AA, 図 3 中 Amp) により増幅し,整合回路を通してイオ ン源に電力を供給する. 増幅器のゲインは 43

図3 実験装置概略図

図4 プローブ診断概略図

dB であり, 増幅後の電力は最大 25 W である.
 また, 増幅器と整合回路の間に方向性結合
 器 (1-200 MHz: R&K, DC070) を挿入し, パ
 ワーメータ (HP, 437B) で入射電力 P_{fwd}, 反射
 電力 P_{ref}を測定する. これらの値からイオン
 源への投入電力 P_{in} = P_{fwd} - P_{ref} を得る. なお,
 ここではフィラメントの加熱による熱電子放
 出を利用した簡易電子源を用いている.

図4にシングルプローブ診断時の概略図を 示す.プローブ先端は,長さが1.1 mm,直径 50 µm のタングステン製である.プローブ測 定時はスクリーン電極を接地し,これを基準 電位とする.図4に示すように,プローブ先 端は放電室の中央に設置する.

半導体パラメータアナライザ (HEWLETT ACKARD, 4145B) により電圧を印加すると 同時に電流を測定し,プローブ電圧電流特性 を得る.特性から得られた電子電流より,電 子温度と電子密度を求める^{6.7)}.この際,電子 飽和電流を用いて計算を行う.なお,ローパ スフィルタを用いて高周波による変動を補償 している.

図 5 電子密度の RF 電力依存性 (周波数 120 MHz)

また、ビーム電流を算出するため、各グリ ッドに流れる電流を測定する.アクセルグリ ッドは電源の高電圧側、スクリーングリッド は電源のグラウンド側にそれぞれシャント抵 抗 (1 k Ω)を挿入し、抵抗にかかる電圧を測 定することで算出する.電圧の測定はデジタ ルマルチメータ (Keithley, 2110)により行う. 得られたスクリーングリッド電流 I_s 、アクセ ルグリッド電流 I_a からイオンビーム電流 $I_b = I_s - I_a$ を得る.

3. 実験結果

3.1 mode 遷移

図 5 に周波数 120 MHz, Xe ガス流量 0.02-0.5 sccmにおける電子密度の RF 電力依 存性を示す. RF 電力を 10 W 程度から徐々に 下げていき,放電が消失する直前までの値を 測定した.図5より,電子密度は RF 電力 1 W 付近において急激に減少することがわかる. また,1W付近で発光強度の急激な減少も確 認した.これらの結果より,1W付近で mode 遷移が起こっていると考えられる.

次に,表1に,イオンビームを引き出した 際に起こる,放電 mode の違いを示す.周波 数120 MHz, RF電力 3-4 W でビーム電流測 定を行った際,流量により放電 mode が変化 することが確認された.電子密度測定の際は RF電力 3-4 W において H-mode であるが,イ オンビームを引き出した際に E-mode となる 流量条件があることがわかる.また,流量が 少ないほど E-mode になりやすく,これは, イオンビームを引き出すことによって放電室 内部の圧力が下がるためであると考えられる.

表1 ビーム電流測定時の mode 遷移 (RF電力 3-4 W)

流量 (sccm)	mode
0.05	E-mode
0.1	E-mode と H-mode 混在
0.3	ほぼ H-mode
0.5	ほぼ H-mode

図 6 電子密度の RF 電力依存性 (周波数 100 MHz)

3.2 電子密度, ビーム電流測定結果

図 6 に,周波数 100 MHz における電子密度 の RF 電力依存性を示す. RF 電力に対して電 子密度がほぼ線形に増加すること,また,ガ ス流量 0.3 sccm において電子密度が最大にな ることがわかる.

図7に、周波数100 MHz におけるビーム電 流の RF 電力依存性を示す.ここで、スクリ ーン電圧は750 V、アクセル電圧は-100 V と している.図7よりガス流量0.1 または0.05 sccmの場合にビーム電流は最大になるが、図 6、7より、電子密度とビーム電流の流量依存 性は異なることがわかる.また、流量が低い ほどビーム電流は大きくなる傾向にあること がわかる.

次に,図8に,周波数100 MHz,RF電力 5-6Wにおけるビーム電流のスクリーン電圧 依存性を示す.スクリーン電圧1000Vの場合 は,ガス流量0.5 sccmで数百µA程と,他の 条件と比較して10倍程度の電流が流れる.こ の現象は他の電力,周波数条件でも,ガス流 量0.5 sccmの場合によく見られた.また,ス クリーン電圧750V以下では,ガス流量0.1

図 9 アクセル電流のスクリーン電圧依存 性

sccmの場合にビーム電流が最大になる. さらに、図9に図8と同条件における、アクセル 電流のスクリーン電圧依存性を示す. 図9より、流量が多いほどアクセル電流は大きくな

図 10 発光強度のスクリーン電圧依存性

図 11 ビーム電流のスクリーン電圧依存性 (コイル浮遊)

る傾向にあることがわかる.このため、スク リーン電流があまり変わらない場合、低流量 でビーム電流が大きくなる.流量が多いほど、 グリッドの孔付近の中性粒子も多くなり、電 荷交換衝突が起こることで、アクセルグリッ ドに戻るイオンが増えるためと考えられる. これは過去の計算結果とも傾向が一致してい る[®].

3.3 コイル電位がビーム電流に与える影響

図 10 に,周波数 100 MHz, RF 電力 5-6 W, ガス流量 0.1, 0.5 sccm の場合における発光強 度のスクリーン電圧依存性を示す. この時, アクセル電圧は 0 V である.図 10 より,スク リーン電圧を上げてイオンビームを引き出す と,発光強度が下がることがわかる.これは, イオンビームを引き出すことにより,内部の 圧力が下がり,電離衝突が少なくなるためと 考えられる.

次に,周波数 100 MHz,電力 5-6 W,スク リーン電圧 1000 V,アクセル電圧 0 V でビー ム電流を測定した際,ガス流量 0.5 sccm では 数百 μA の電流が流れていた.一方で,図 10 が示すように,同条件の発光強度に著しい変 化は見られない.よって,実際にイオンビー ムが上昇しているとは考えにくい.

前節におけるビーム電流測定では,プロー ブ測定時と同様に,コイルの片側 (Xe ガス導 入側)を接地していた.高電圧が印加されて いるスクリーン電極と,接地されているコイ ルとの大きな電位差がビーム電流測定に影響 を与えていると仮定し,コイルの接地側にキ ャパシタ (470 pF)を直列に挿入することで, コイルを浮遊させてビーム電流測定を行った. 図 11 に,図 8 と同条件でコイルを浮遊させた 場合の実験結果を示す.図 8 と図 11 を比較す ると,コイルを浮遊させた場合は,ガス流量 0.5 sccm においても数百 μA の電流が流れる ことはなくなった.この結果より,コイルを 接地していることが,スクリーン電流に大き く影響を与えているとわかった.

また,スクリーン電圧 750 V 以下ではガス 流量 0.1 sccm の場合にビーム電流が最大とな ることがわかる.このように,コイルを浮遊 させた場合においても,低流量でビーム電流 が最大となる傾向が見られた.

4. 結言

本研究では,超小型高周波イオン推進機に 対してシングルプローブ診断を行い,イオン 源における電子密度と mode 遷移の,ガス流 量および RF 電力依存性を調べた.また,イ オンビーム電流についても同様に調べ,電子 密度および mode 遷移との関連性について考 察を行った.

実験結果より,電子密度はガス流量 0.3 sccm で最大となり, RF 電力1W 程度で mode 遷移が起こることがわかった.一方で,ビーム電流はガス流量 0.1 sccm で最大となることがわかった.ビーム電流の傾向は,過去の数値計算結果と一致していた.なお,イオンビームを引き出した場合は,低流量の条件で RF 電力 3-4W においても E-mode となる傾向が見られ,イオンビームを引き出さない場合より高電力が必要であるとわかった.

また、コイルの浮遊、接地の条件がビーム

電流に大きく影響しているとわかった.しか し,現段階で,この原因は特定できていない. 今後の課題は,ダブルプローブを用いた電 子密度測定結果の検証,コイル浮遊の場合の ビーム電流の条件依存性の調査,イオンビー ムを引き出す場合に低電力で H-mode を維持 する条件の探索である.

参考文献

- Micci, M. M., and Ketsdever, D.A.: Micropropulsion for Small Spacecraft (Reston, AIAA, 2000).
- Takao, Y., Kusaba, N., Eriguchi, K., and Ono, K.: Two-dimensional particle-in-cell Monte Carlo simulation of a miniature inductively coupled plasma source, J. Appl. Phys. **108** (2010) 093309.
- 3) 鷹尾祥典,江利口浩二,斧高一:ICP プラズマ 源を用いたマイクロイオンスラスタの PIC/MC モデル構築,第 53 回宇宙科学技術連合講演会 講演集,2009, pp.892-897 (JSASS-2009-4196).
- (
 鷹尾祥典,阪本将隆,江利口浩二,斧高一: 外部回路を考慮した超小型高周波イオン推進 機の粒子シミュレーション,第 56 回宇宙科学 技術連合講演会講演集,2012
 (JSASS-2012-4439).
- 5) 菅井秀郎:応用物理, 63 (1994) 559.
- 6) 堤井信力: プラズマ基礎工学増補版,(内田 老鶴圃, 1997).
- 雨宮,和田他:プローブ測定の基礎から応 用まで,J. Plasma Fusion Res. 81 (2005) 482.
- Takao, Y., Sakamoto, M., Eriguchi, K., and Ono, K.: Investigation of Plasma Characteristics and Ion Beam Extraction for a Micro RF Ion Thruster, Trans. JSASS Space Tech. Japan, in press.