レーザ照射により作動制御を行うマイクロ固体推進機の試作 A Laser-controlled Micro Solid Propellant Thruster

○濱田 剛俊¹⁾,下田 真之¹⁾,各務 聡²⁾,橘 武史¹⁾
1)九州工業大学 2)宮崎大学

○Taketoshi Hamada¹, Masayuki Shimoda¹, Akira Kakami², Takeshi Tachibana¹
1)Kyushu Institute of Technology 2)Miyazaki University

1. 序論

近年,宇宙機器の軌道・姿勢制御を行う小型推進機にも更なる軽量化や,低コスト化,高い信頼性が要求されてきている.固体推進 機は液体推進機に比べ,構造が簡単で可動部 分が少なく,コスト削減や信頼性の確保が容 易であるという長所を持つ.他方,固体推進 薬は一度着火すると燃焼が持続するため,燃 焼の中断・再着火などの燃焼制御が困難であ ることから,繰り返し作動が必要な姿勢制御 には不向きであった.そこで,本研究では, 外部からのエネルギー供給がある時にのみ 燃焼を維持できる固体推進薬を用いて,その 外部熱供給源としてレーザを用いることに より燃焼の制御を可能とする推進機を提案 している.

これまでの研究で、燃焼の制御が可能な固体推進薬の配合とその燃焼速度、必要なレー ザパワーを明らかにし、推進機の試作および 作動実験を行ってきた.しかし、試作した推 進機の作動は不安定であり、測定出来た推力 は目標値の10%に留まった.今回、新たに 推進機を製作し、作動の確認と推力の向上、 作動の安定化を図った.また、燃焼室圧力の 測定を試みた.

2. 実験装置および方法

Fig. 1 に製作した固体推進機の概略図を 示す. 推進機は燃焼室となるプロペラントホ ルダ部とノズル部で構成されている. プロペ ラントホルダはレーザ導入窓を兼ねるため, レーザの透過率が高いアクリルで製作した. レーザヘッドは,同じ位置にレーザを照射し 続けると,照射部分の推進薬が消失した後, レーザ光が推進薬に当たらなくなることか ら,ラック&ピニオン機構と,ステッピング モーターにより移動させ,常時レーザによる 推進薬の加熱を可能とした.

ノズル部は、実験で求めた燃焼速度と 化学平衡計算プログラム CEA(Chemical Equilibrium with Applications)による理論値 を用いて、設計推力を 0.20 N として設計し た.推進薬には、これまでの研究でレーザに より燃焼が制御できることが確認された HT PB/AP/C = 30/70/0.5 wt% (AP 粒径は 10 μ m) を用いており、形状は 6×6×20 mm の 直方体である.

Fig. 2 には実験装置の概略図を示す.実験は 約 1kPa に減圧した,真空チャンバ内で行っ た.推進機をスラストスタンドに設置し,レ ーザヘッドを初め,推進薬のノズル側の端に 配置した.レーザ照射中はモーターにより, レーザヘッドを速度 v で移動させて,推進薬 を加熱する.このときのスラストスタンドの 振れを変位センサにより測定し,推力を算出 する.また,燃焼室圧力を推進機と接続され た圧力センサから測定した.Table 1 に実験 条件を示す.

Table 1 作動実験条件

レーザパワー密度 <i>I</i> L, [W/mm ²]	0.62, 0.69
レーザ照射距離, [mm]	20
レーザヘッド送り速度 v, [mm/s]	0.10, 0.20, 0.30, 0.40
ノズル断面積, [mm ²]	0.50

Fig.2 実験装置の概略図

3. 実験結果

3.1 作動実験結果 Fig. 3 にスロート断面積 0.50 mm², レーザ パワー密度 0.62 W/mm², レーザヘッド送り 速度 0.40 mm/s のときの作動結果を示す. レ ーザ照射区間は, グラフ上の 2 つの破線の間 である. また, 推力の時間変化が上のグラフ, 燃焼室圧力の時間変化が下のグラフである. グラフから推力と燃焼室圧力の生成のタ イミングがほぼ同じであることがわかる.レ ーザ照射を開始して,約6秒後に推力と燃焼 室圧力の生成を確認できた.さらに時間を追 って見ていくと,約20秒後に最大の推力と 燃焼室圧力を生成した.この時,推力は約 0.52 N,燃焼室圧力は約1100 kPa であった. その後も断続的に推力と燃焼室圧力が生成 された.これらのことから,製作した推進機 の作動を断続的であるが確認でき,推力の向 上を達成できた.しかし,どの実験条件にお いても,Fig.3のような断続的な推力生成と なったことから,作動の安定化には至らなか ったと言える.

4. 考察

4.1 燃焼室圧力について

今回, 製作した推進機は, 推進薬消費量と ノズルから排出される燃焼ガス量との釣り 合いから, 燃焼室圧力がおよそ 225 kPa 付近 で定常となる設計である.しかし Fig. 3 の結 果において, 測定された燃焼室圧力の最大値 は約 1100 kPa であった.

この原因として,推進薬燃焼時に発生する 煤などによるスロート部の閉塞が考えられ る. Fig. 4, 5 にそれぞれ実験前と実験後の推 進機のノズル入口部分の写真を示す.これら の図からスロート部の閉塞が確認できる.ス ロート部が閉塞すると,排出される燃焼ガス 量が減少する.その結果,推進薬消費量と釣 り合うために燃焼室圧力が設計値以上に上 昇したと推測される.

4.2 断続的な推力生成の原因

推力生成が断続的であった原因として以下の3つが考えられる.

4.2.1 スロート部の閉塞

前項でも述べたが,スロート部の閉塞により燃焼室圧力が大きく上昇すると,圧力に耐え切れずにスロート部の煤などが吹き飛び, 閉塞が緩和されると思われる.そうすると, 今度は燃焼室圧力が低下する.このようなメ カニズムにより,作動中にスロート径の変化 が起きていることが挙げられる.

4.2.2 燃焼室体積の増加

今回製作した推進機は、その構造上、推進 薬の消費が進むにつれて燃焼室体積が大き くなってしまう.推力を安定させるためには、 体積増加に合わせて、燃焼量を増加させなけ ればならないが、今回の実験では、レーザパ ワー密度とレーザヘッド送り速度を作動中 一定にしていることから、この変化に対応出 来ていないと考えられる.

4.2.3 瞬間的な燃焼量の変化

今回の結果では、燃焼室圧力が安定してお らず、スロート径も変化していると推測され るので、その時その時での推進薬消費量も変 化している.消費量が変化すると推力と燃焼 室圧力にも影響を及ぼし、またレーザヘッド 送り速度が一定なため、推進薬の消費に対し て、レーザが追従出来ていないことが考えら れる.

5. 結論

本研究より,以下の結論を得た.

- レーザ照射により燃焼の制御を行う固体推 進機を試作し、作動の確認を行った。
- スロート断面積0.50 mm²、レーザパワー密度0.62 W/mm²、レーザヘッド送り速度0.40 mm/sのとき、最大で約0.52 Nの推力生成を確認できた.また、このときの燃焼室圧力は約1100kPaであった.
- ・測定できた圧力は、設計値から大幅に大きく、この原因としてスロート部の閉塞が考えられる。
- ・作動の安定化のためには、スロート部閉塞 の改善と燃焼室体積の一定化、燃焼室圧力 に見合ったレーザパワー密度、レーザヘッ ド送り速度の制御が必要であると考えら れる.

6. 参考文献

- 1. 木村 逸郎,「ロケット工学」, 養賢堂, (1993)
- 久保田 浪之介,「ロケット燃焼工学」, 日刊工業新聞社,(1981)
- 3. 火薬学会, PROPELLANT HANDBOOK, 社団法人火薬学会, (2005)

Fig. 3 レーザパワー密度 0.62 W/mm²、レーザヘッド 送り速度 0.40 mm/s での作動結果

Fig.4 実験前の ノズル入口部分

Fig. 5 実験後のノズル入口部分